Final Exam Announcements

- Final 12/7/15 3:30-6:30pm in Thornton 102 (here)
- Covers Chapters 9.1-9.3.4, 10.1-10.5, 10.7, 12, 13.1-13.4, 14.1-14.2 (plus pre-MT material)
- Similar format to MT, but longer: open book, notes.
 - If you need a book or calculator, let us know by 12/3/14
- Practice finals posted (10 bonus points)
 - Turn in for solns, by exam for bonus pts
- Final review and discussion section: Thur 12/3 1:30-3pm, Packard 364.
OHs leading up to final exam

- **Mine**
 - Sat: 12/5 2:30-4pm
 - Mon: 12/7 10-11:30am

- **TAs:**
 - Thur 3-4 pm in Packard 364
 - Fri 2-3 pm in Packard 109, 3-4 pm outside Packard 340
 - Sat 4-5 pm outside Packard 340
 - Sun 1-2 pm outside Packard 340
Course Summary

- Signal Propagation and Channel Models
- Modulation and Performance Metrics
- Impact of Channel on Performance
- Fundamental Capacity Limits
- Flat Fading Mitigation
 - Diversity
 - Adaptive Modulation
- ISI Mitigation
 - Equalization (not covered)
 - Multicarrier Modulation/OFDM
 - Spread Spectrum
- Multiuser Systems
 - Time/frequency/code/space division
Future Wireless Networks

Ubiquitous Communication Among People and Devices

Wireless Internet access
Nth generation Cellular
Wireless Ad Hoc Networks
Sensor Networks
Wireless Entertainment
Smart Homes/Spaces
Automated Highways
All this and more…

- Hard Delay/Energy Constraints
- Hard Rate Requirements
Design Challenges

- Wireless channels are a difficult and capacity-limited broadcast communications medium.
- Traffic patterns, user locations, and network conditions are constantly changing.
- Applications are heterogeneous with hard constraints that must be met by the network.
- Energy, delay, and rate constraints change design principles across all layers of the protocol stack.
Signal Propagation

- **Path Loss**
 - Free space, 2-path,…
 - Simplified model
 \[P_r = P_t K \left(\frac{d_0}{d} \right)^\gamma \], \(2 \leq \gamma \leq 8 \)

- **Shadowing**
 - dB value is Gaussian
 - Find path loss exponent and shadow STD by curve fitting

- **Multipath**
 - Ray tracing
 - Statistical model
Outage Probability and Cell Coverage Area

- **Path loss**: circular cells
- **Path loss + shadowing**: amoeba cells
 - Tradeoff between coverage and interference
- **Outage probability**
 - Probability received power below given minimum
- **Cell coverage area**
 - % of cell locations at desired power
 - Increases as shadowing variance decreases
 - Large % indicates interference to other cells
Statistical Multipath Model

- Random # of multipath components, each with varying amplitude, phase, doppler, and delay
- Leads to time-varying channel impulse response

\[c(\tau, t) = \sum_{n=1}^{N} \alpha_n(t)e^{-j\phi_n(t)} \delta(\tau - \tau_n(t)) \]

- Narrowband channel
 - No signal distortion, just a complex amplitude gain
 - Signal amplitude varies randomly (Rayleigh, Ricean, Nakagami).
 - 2nd order statistics (Bessel function), Average fade duration
Wideband Channels

- Individual multipath components resolvable
- True when time difference between components exceeds signal bandwidth

- Scattering function
 \[s(\tau, \rho) = F_{\Delta t}[A_c(\tau, \Delta t)] \]
 - Yields delay spread/coherence BW \((\sigma_\tau \sim 1/B_c) \)
 - Yields Doppler spread/coherence time \((B_d \sim 1/T_c) \)
Capacity of Flat Fading Channels

- Channel Capacity
 - Maximum data rate that can be transmitted over a channel with arbitrarily small error

- Capacity of AWGN Channel: $\text{Blog}_2[1+\gamma]$ bps
 - $\gamma = \frac{P_r}{(N_0B)}$ is the receiver SNR

- Capacity of Flat-Fading Channels
 - Nothing known: capacity typically zero
 - Fading Statistics Known (few results)
 - Fading Known at RX (average capacity)

\[C = \int_{0}^{\infty} B \log_2 (1 + \gamma) p(\gamma) d\gamma \leq B \log_2 (1 + \bar{\gamma}) \]
• **Capacity in Flat-Fading**: γ known at TX/RX

$$C = \max_{P(\gamma) : E[P(\gamma)] = \bar{P}} \int_0^\infty B \log_2 \left(1 + \frac{\gamma P(\gamma)}{P}\right) p(\gamma) d\gamma$$

• **Optimal Rate and Power Adaptation**

$$\frac{P(\gamma)}{P} = \begin{cases} \frac{1}{\gamma_0} - \frac{1}{\gamma} & \gamma \geq \gamma_0 \\ 0 & \text{else} \end{cases}$$

$$\frac{C}{B} = \int_{\gamma_0}^\infty \log_2 \left(\frac{\gamma}{\gamma_0}\right) p(\gamma) d\gamma.$$

• The instantaneous power/rate only depend on $p(\gamma)$ through γ_0
Channel Inversion

- Fading inverted to maintain constant SNR
- Simplifies design (fixed rate)
- Greatly reduces capacity
 - Capacity is zero in Rayleigh fading
- Truncated inversion
 - Invert channel above cutoff fade depth
 - Constant SNR (fixed rate) above cutoff
 - Cutoff greatly increases capacity
 - Close to optimal
Frequency Selective Fading Channels

- For time-invariant channels, capacity achieved by water-filling in frequency
- Capacity of time-varying channel unknown
- Approximate by dividing into subbands
 - Each subband has width B_c
 - Independent fading in each subband
 - Capacity is the sum of subband capacities

$$\frac{1}{|H(f)|^2}$$
Linear Modulation in AWGN: MPSK and MQAM

- ML detection induces decision regions
 - Example: 8PSK

- P_s depends on
 - # of nearest neighbors
 - Minimum distance d_{min} (depends on γ_s)
 - Approximate expression

$$P_s \approx \alpha_M Q\left(\sqrt{\beta_M \gamma_s}\right)$$
Linear Modulation in Fading

- In fading γ_s and therefore P_s random
- Metrics: outage, average P_s, combined outage and average.

$$\overline{P_s} = \int P_s(\gamma_s) p(\gamma_s) d\gamma_s$$
Moment Generating Function Approach

- Simplifies average P_s calculation
- Uses alternate Q function representation
- $\overline{P_s}$ reduces to MGF of γ_s distribution
- Closed form or simple numerical calculation for general fading distributions
- Fading greatly increases average P_s.
Doppler Effects

- High doppler causes channel phase to decorrelate between symbols
- Leads to an irreducible error floor for differential modulation
 - Increasing power does not reduce error
- Error floor depends on $f_D T_b$ as

$$P_{floor} = \frac{1 - J_0(2\pi f_D T_b)}{2} \approx 0.5(\pi f_D T_b)^2$$
Delay Spread (ISI) Effects

- Delay spread exceeding a symbol time causes ISI (self interference).

- ISI leads to irreducible error floor: $\overline{P}_{b,\text{floor}} \approx (\sigma_{T_m}/T_s)^2$
 - Increasing signal power increases ISI power

- ISI imposes data rate constraint: $T_s >> T_m \ (R_s << B_c)$

$$R \leq \log_2(M) \times \sqrt{\overline{P}_{b,\text{floor}}/\sigma_{T_m}^2}$$
Diversity

- Send bits over independent fading paths
 - Combine paths to mitigate fading effects.

- Independent fading paths
 - Space, time, frequency, polarization diversity.

- Combining techniques
 - Selection combining (SC)
 - Maximal ratio combining (MRC)

- Can have diversity at TX or RX
 - In TX diversity, weights constrained by TX power
Selection Combining

- Selects the path with the highest gain
- Combiner SNR is the maximum of the branch SNRs.
- CDF easy to obtain, pdf found by differentiating.
- Diminishing returns with number of antennas.
- Can get up to about 20 dB of gain.
MRC and its Performance

- With MRC, $\gamma_\Sigma = \Sigma \gamma_i$ for branch SNRs γ_i
 - Optimal technique to maximize output SNR
 - Yields 20-40 dB performance gains
 - Distribution of γ_Σ hard to obtain

- Standard average BER calculation
 $$\overline{P}_s = \int \int \cdots \int P_s(\gamma_\Sigma) p(\gamma_\Sigma) d\gamma_\Sigma = \int \int \cdots \int P_s(\gamma_\Sigma) p(\gamma_1) \cdot p(\gamma_2) \cdots \cdot p(\gamma_M) d\gamma_1 d\gamma_2 \cdots d\gamma_M$$
 - Hard to obtain in closed form
 - Integral often diverges

- MGF Approach:
 $$\overline{P}_s = \frac{\alpha M}{\pi} \int_0^{\pi/2} \prod_{i=1}^M M_{\gamma_i} \left[\frac{-0.5 \beta_M}{\sin^2 \phi} \right] d\phi.$$
 - TX diversity has same gains as RX diversity
Variable-Rate Variable-Power MQAM

Uncoded Data Bits → Delay → \(\gamma(t) \) → Point Selector → One of the M(\(\gamma \)) Points → \(\gamma(t) \) → To Channel

- \(\log_2 M(\gamma) \) Bits
- M(\(\gamma \))-QAM Modulator
- Power: \(S(\gamma) \)

\(M(\gamma) \)-QAM Points:
- BSPK
- 4-QAM
- 16-QAM

Goal: Optimize \(S(\gamma) \) and \(M(\gamma) \) to maximize \(EM(\gamma) \)
Optimal Adaptive Scheme

- **Power Water-Filling**
 \[
 \frac{S(\gamma)}{\bar{S}} = \begin{cases}
 \frac{1}{\gamma_0} - \frac{1}{\gamma K} & \gamma \geq \frac{\gamma_0}{K} = \gamma_K \\
 0 & \text{else}
 \end{cases}
 \]

- **Spectral Efficiency**
 \[
 \frac{R}{B} = \int_{\gamma_k}^{\infty} \log_2 \left(\frac{\gamma}{\gamma_K} \right) p(\gamma) d\gamma.
 \]

Equals Shannon capacity with an effective power loss of K.
Constellation Restriction

\[
M(\gamma) = \frac{\gamma}{\gamma K^*}
\]

\[
M_1 = \frac{\gamma_1}{K^*} = M_1
\]

Power adaptation:

\[
\frac{P_j(\gamma)}{P} = \begin{cases}
(M_j - 1)/\gamma K & \gamma_j \leq \gamma < \gamma_{j+1}, j > 0 \\
0 & \gamma < \gamma_1
\end{cases}
\]

Average rate:

\[
\frac{R}{B} = \sum_{j=1}^{N} \log_2 M_j p(\gamma_j \leq \gamma < \gamma_{j+1})
\]

Performance loss of 1-2 dB
Practical Constraints

- Constant power restriction
 - Another 1-2 dB loss

- Constellation updates
 - Need constellation constant over $10-100T_s$
 - Use Markov model to obtain average fade region duration

- Estimation error and delay *(not on final)*
 - Lead to imperfect CSIT (assume perfect CSIR)
 - Causes mismatch between channel and rate
 - Leads to an irreducible error floor
MIMO systems have multiple \(M \) transmit and receiver antennas.

Decompose channel through transmit precoding \((x=V\tilde{x})\) and receiver shaping \((\tilde{y}=U^Hy)\)

\[y = Hx + n \quad \text{H=U}\Sigma V^H \quad \tilde{y} = \Sigma \tilde{x} + \tilde{n} \quad \tilde{y}_i = \sigma_i \tilde{x} + \tilde{n}_i \]

Leads to \(R_H \leq \min(M_t, M_r) \) independent channels with gain \(\sigma_i \) (\(i^{th} \) singular value of \(H \)) and AWGN

Independent channels lead to simple capacity analysis and modulation/demodulation design
Capacity of MIMO Systems

- Depends on what is known at TX and RX and if channel is static or fading

- For static channel with perfect CSI at TX and RX, power water-filling over space is optimal:
 - In fading waterfill over space (based on short-term power constraint) or space-time (long-term constraint)

- Without transmitter channel knowledge, capacity metric is based on an outage probability
 - P_{out} is the probability that the channel capacity given the channel realization is below the transmission rate.
Beamforming

- Scalar codes with transmit precoding

\[y = u^H H v x + u^H n \]

- Transforms system into a SISO system with diversity.
 - Array and diversity gain
 - Greatly simplifies encoding and decoding.
 - Channel indicates the best direction to beamform
 - Need “sufficient” knowledge for optimality of beamforming

- Precoding transmits more than 1 and less than \(R_H \) streams
 - Transmits along some number of dominant singular values
Diversity vs. Multiplexing

- Use antennas for multiplexing or diversity

- Diversity/Multiplexing tradeoffs (Zheng/Tse)

\[
\lim_{SNR \to \infty} \frac{\log P_e(SNR)}{\log SNR} = -d
\]

\[
\lim_{SNR \to \infty} \frac{R(SNR)}{\log SNR} = r
\]

\[
d^*(r) = (M_t - r)(M_r - r)
\]
How should antennas be used?

- Use antennas for multiplexing:
 - High-Rate Quantizer → ST Code High Rate → Decoder
 - Error Prone

- Use antennas for diversity
 - Low-Rate Quantizer → ST Code High Diversity → Decoder
 - Low \(P_e \)

Depends on end-to-end metric: \textit{Solve by optimizing app. metric}
MIMO Receiver Design

- **Optimal Receiver:**
 - Maximum likelihood: finds input symbol most likely to have resulted in received vector
 - Exponentially complex # of streams and constellation size

- **Linear Receivers**
 - Zero-Forcing: forces off-diagonal elements to zero, enhances noise
 - Minimum Mean Square Error: Balances zero forcing against noise enhancement

- **Sphere Decoder:**
 - Only considers possibilities within a sphere of received symbol.
 - If minimum distance symbol is within sphere, optimal, otherwise null is returned

$$\hat{x} = \arg \min | y - Hx |^2$$

ML Decoding

Sphere Decoding

$$\hat{x} = \arg \min_{x:|y-Hx|<r} | y - Hx |^2$$
Other MIMO Design Issues

• Space-time coding (*not covered on final*):
 - Map symbols to both space and time via space-time block and convolutional codes.
 - For OFDM systems, codes are also mapped over frequency tones.

• Adaptive techniques:
 - Fast and accurate channel estimation
 - Adapt the use of transmit/receive antennas
 - Adapting modulation and coding (*not covered on final*)

• Limited feedback (*not covered on final*):
 - Partial CSI introduces interference in parallel decomp: can use interference cancellation at RX
 - TX codebook design for quantized channel
Multicarrier Modulation

- Divides bit stream into N substreams
- Modulates substream with bandwidth B/N
 - Separate subcarriers
 - $B/N < B_c$ → flat fading (no ISI)
- Requires N modulators and demodulators
 - Impractical: solved via OFDM implementation

![Diagram of Multicarrier Modulation]
Overlapping Substreams

- Can have completely separate subchannels
 - Required passband bandwidth is B.

- OFDM overlaps substreams
 - Substreams (symbol time T_N) separated in RX
 - Minimum substream separation is B_N.
 - Total required bandwidth is $B/2$ (for $T_N = 1/B_N$)

\[
\text{B/N}
\]

\[
f_0 \quad f_{N-1}
\]
FFT Implementation of OFDM

- Use IFFT at TX to modulate symbols on each subcarrier
- Cyclic prefix makes linear convolution of channel circular, so no interference between FFT blocks in RX processing
- Reverse structure (with FFT) at receiver

\[R \text{ bps} \]

TX

- QAM Modulator
 - Serial To Parallel Converter
 - IFFT
 - Add cyclic prefix and Parallel To Serial Convert

\[X_0 \]

\[X_0 \]

\[X_{N-1} \]

\[X_{N-1} \]

\[\cos(2\pi f_c t) \]

\[h(t) \]

\[n(t) \]

RX

- \(\cos(2\pi f_c t) \)
- LPF
- A/D
- Remove cyclic prefix and Serial to Parallel Convert

\[X \]

\[y_0 \]

\[y_{N-1} \]

\[Y_0 \]

\[Y_{N-1} \]

\[Y_i = H_i X_i + n_i \]

- FFT
- Parallel To Serial Convert
- QAM Modulator

\[R \text{ bps} \]
OFDM Design Issues

- **Timing/frequency offset:**
 - Impacts subcarrier orthogonality; self-interference

- **Peak-to-Average Power Ratio (PAPR)**
 - Adding subcarrier signals creates large signal peaks
 - Solve with clipping or PAPR-optimized coding

- **Different fading across subcarriers**
 - Mitigate by precoding (fading inversion), adaptive modulation over frequency, and coding across subcarriers
MIMO-OFDM

- Send OFDM symbol along each spatial dimension
 - MIMO diversity-capacity benefits, OFDM removes ISI
 - Can adapt across time, space, and frequency

- OFDM can be represented by a matrix:
 - Represents DFT as a matrix: $y = \hat{H}x + v$, \hat{H} circulant
 - Then vector $Y = \Lambda X + v_Q$ for Λ an $N \times N$ diagonal matrix
 - Cyclic prefix added after DFT

- MIMO-OFDM matrix representation: $y = Hx + v$
 - Dimensions are H: $NM_r x (N+\mu)M_t$; x: $(N+\mu)M_t$; y,v: $M_r N$
 - Extends matrix representation of OFDM (example in HW)
Direct Sequence Spread Spectrum

- Bit sequence modulated by \textit{chip} sequence
- Spreads bandwidth by large factor (K)
- Despread by multiplying by $s_c(t)$ again ($s_c(t)=1$)
- Mitigates ISI and narrowband interference
 - ISI mitigation a function of code autocorrelation
- Must synchronize to incoming signal
ISI and Interference Rejection

- **Narrowband Interference Rejection \((1/K)\)**

 - Info. Signal
 - Receiver Input
 - Despread Signal

- **Multipath Rejection (Autocorrelation \(\rho(\tau)\))**

 - Info. Signal
 - Receiver Input
 - Despread Signal

- **Short codes repeat every \(T_s\), so poor multipath rejection at integer multiples of \(T_s\)**

- **Otherwise take a partial autocorrection**
Spreading Code Design

- Autocorrelation determines ISI rejection
 - Ideally equals delta function

- Would like similar properties as random codes
 - Balanced, small runs, shift invariant (PN codes)

- Maximal Linear Codes
 - No DC component
 - Max period \((2^n-1)T_c \)
 - Linear autocorrelation
 - Recorrelates every period
 - Short code for acquisition, longer for transmission
 - In SS receiver, autocorrelation taken over \(T_s \)
 - Poor cross correlation (bad for MAC)
Synchronization

- Adjusts delay of $s_c(t-\tau)$ to hit peak value of autocorrelation.
 - Typically synchronize to LOS component
- Complicated by noise, interference, and MP
- Synchronization offset of Δt leads to signal attenuation by $\rho(\Delta t)$
- Synchronize with long codes for better performance
RAKE Receiver

- **Multibranch receiver**
 - Branches synchronized to different MP components

- These components can be coherently combined
 - Use SC, MRC, or EGC
Multiuser Channels: Uplink and Downlink

Uplink (Multiple Access Channel or MAC): Many Transmitters to One Receiver.

Downlink (Broadcast Channel or BC): One Transmitter to Many Receivers.

Uplink and Downlink typically duplexed in time or frequency
Bandwidth Sharing

- Frequency Division
 - OFDMA

- Time Division

- Code Division
 - Code cross-correlation dictates interference
 - Multiuser Detection

- Space (MIMO Systems)

- Hybrid Schemes
Code Division via DSSS

- Interference between users mitigated by code cross correlation

\[
\hat{x}(t) = \int_0^{T_h} \alpha_1 s_1(t)s_{c1}(t)\cos^2(2\pi f_c t) + \alpha_2 s_2(t-\tau)s_{c2}(t-\tau)s_{c1}(t)\cos(2\pi f_c t)\cos(2\pi f_c (t-\tau)) dt
\]
\[
= .5\alpha_1 d_1 + .5\alpha_2 d_2 \int_0^{T_h} s_{c1}(t)s_{c2}(t) dt = .5d_1 + .5d_2 \cos(2\pi f_c \tau) \rho_{12}(\tau)
\]

- In downlink, signal and interference have same received power

- In uplink, “close” users drown out “far” users (near-far problem)
OFDMA and SDMA

- **OFDMA**
 - Implements FD via OFDM
 - Different subcarriers assigned to different users

- **SDMA (space-division multiple access)**
 - Different spatial dimensions assigned to different users
 - Implemented via multiuser beamforming (e.g. zero-force beamforming)
 - Benefits from multiuser diversity
Megathemes of EE359

- The wireless vision poses great technical challenges
- The wireless channel greatly impedes performance
 - Low fundamental capacity; Channel is randomly time-varying.
 - Flat fading and ISI must be compensated for.
- Compensate for flat fading with diversity or adaptive mod.
- MIMO provides diversity and/or multiplexing gain
- A plethora of ISI compensation techniques exist
 - Various tradeoffs in performance, complexity, and implementation.
 - OFDM and spread spectrum are the dominant techniques
 - OFDM works well with MIMO: basis for 4G Cellular/WiFi systems due to flexibility in adapting over time/space/frequency
- How best to share the limited spectrum among multiple users remains a major challenge in wireless system design