

1

3

Outline

- Course Basics
- Course Syllabus
- Wireless History
- The Wireless Vision
- Technical Challenges
- Current/Next-Gen Wireless Systems
- Spectrum Regulation and Standards
- Emerging Wireless Systems (Optional Lecture)

About me

• Engineering prof dad, cartoonist mom

- Fell in love with wireless.
- Ph.D. from UCB: 1989-1994
 - Summers at AT&T Bell Labs
- Taught at Caltech 1994-1999
- Moved to Stanford in 1999
 - Lots of stuff in addition to research, teaching

• Best Results: Daniel (22) and Nicole (20)

2

4

Course Information* People

- Instructor: Andrea Goldsmith, Pack 371, andrea@ee, OHs: TTh immediately after class and by appt.
- TA: Tom Dean (trdean@stanford.edu)
 - Discussion section: Wed 4-5 pm (hopefully taped)
 - OHs: Wed 5-6pm, Th 4-5pm, Fri 11-12pm (tentative). Emails received during OHs will be responded to during or just after. Email questions are ideally via Piazza.
 - Piazza: https://piazza.com/stanford/win2020/ee359/home. All are registered, will use to poll on OH/discussion times
- Class Administrator: Dash Corbett, email: dashiellcorbett@stanford.edu, 365 Packard, 723-2681. Homework dropoff: Fri by 4 pm.

*See web or handout for more details

Nuts and Bolts

- Prerequisites: EE279 or equivalent (Digital Communications)
- Textbook: Wireless Communications (by me), draft 2nd Ed.
 - Available as reader at bookstore or on website
 - Raffle for \$100 Amazon gift card for typos/mistakes/suggestions
 - Supplemental texts at Engineering Library.
- Class Homepage: www.stanford.edu/class/ee359
 - All announcements, handouts, homeworks, etc. posted to website
 - "Lectures" link continuously updates topics, handouts, and reading
 - Calendar will show any changes to class/OH/discussion times
- Class Mailing List: ee359-win1920-students@lists (automatic for on-campus registered students).
 - Guest list ee359-win1920-guest@lists for SCPD and auditors: send Tom email to sign up.
 - Sending mail to <u>ee359-win1920-staff@lists</u> reaches me and Tom.

5

Course Information Projects

- The term project (for students electing to do a project) is a research project related to any topic in wireless
- Two people may collaborate if you convince me the sum of the parts is greater than each individually
- A 1 page proposal is due 2/7 at midnight.
 - 5-10 hours of work typical for proposal
 - Must create project website and post proposal there (submit web link)
 - Preliminary proposals can be submitted for early feedback
- The project is due by midnight on 3/14 (on website)
 - 20-40 hours of work after proposal is typical for a project
- Suggested topics in project handout
 - Anything related to wireless or application of wireless techniques ok.

Course Information Policies

- Grading: Two Options
 - No Project (3 units): HW 25%, 2 Exams 35%, 40%
 - Project (4 units): HWs- 20%, Exams 25%, 30%, Project 25%
- HWs: assigned Thu, due following Fri 4pm (starts next week)
 - Homeworks lose 33% credit after 4pm Fri, lowest HW dropped
 - Up to 3 students can collaborate and turn in one HW writeup
 - Collaboration means all collaborators work out all problems together
 - Unpermitted collaboration or aid (e.g. solns for the book or from prior years) is an honor code violation and will be dealt with strictly.
 - Extra credit: up to 2 "design your own" HW problems; course eval
- Exams:
 - Midterm week of 2/17 (It will be scheduled outside class time; the duration is 2 hours.) Final on 3/17 from 3:30-6:30pm (pizza after)
 - Exams must be taken at scheduled time (with very few exceptions)

6

Course Syllabus

- Overview of Wireless Communications
- Path Loss, Shadowing, and Fading Models
- Capacity of Wireless Channels
- Digital Modulation and its Performance
- Adaptive Modulation
- Diversity
- MIMO Systems
- Multicarrier Systems: OFDM and other waveforms
- Multiuser and Cellular Systems

7

Tentative Detailed Syllabus

Lecture #	Date	Topic	Required Reading
		-	•
		Introduction	
1	1/7	Overview of Wireless Communications	Chapter 1
		Wireless Channel Models	
2-3	1/9, 1/14	Path Loss and Shadowing Models, Millimeter wave propagation	Chapter 2
4-5	1/17, 1/21	Statistical Fading Models, Narrowband Fading	Section 3.1-3.2.3
6	1/23	Wideband Fading Models	Section 3.3
		Impact of Fading and ISI on Wireless Performan	ce
7	1/28	Capacity of Wireless Channels	Chapter 4
8,9,10	1/30, 2/5, 2/6	Digital Modulation and its Performance	Lec 8: Chapter 5 Lec 9-10: Chapter 6
	•	Flat-Fading Countermeasures	•
11	2/11	Diversity	Chapter 7
MT	Week of 2/17	Midterm (outside class time)	Chapters 2 to 7
12-13	2/13-2/18	Adaptive Modulation	Chapter 9.1-9.3
14-15	2/21-2/25	Multiple Input/Output Systems (MIMO)	Chapter 10, Appendix C
	1	ISI Countermeasures	"
16-17	2/27, 3/3	Multicarrier Systems, OFDM, and other multicarrier waveforms	Chapter 12
18-19	3/4-3/10	Multiuser and Cellular Systems	Topics in Chapters 13-15
		Course Summary	
20	3/12	Course summary/final review (and optional advanced topics lecture over lunch)	
Final	3/17	3:30-6:30pm	Pizza party to follow

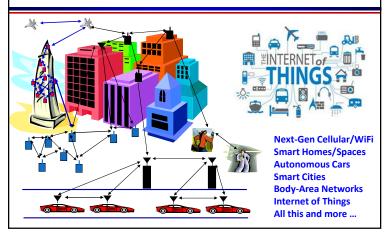
9

11

Wireless History

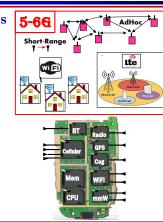
- Ancient Systems: Smoke Signals, Carrier Pigeons, ...
- Radio invented in the 1880s by Marconi
- Many sophisticated military radio systems were developed during and after WW2
- Exponential growth in cellular use since 1988: approx. 8B worldwide users today
 - Ignited the wireless revolution
 - Voice, data, and multimedia ubiquitous
 - Use in 3rd world countries growing rapidly
- Wifi also enjoying tremendous success and growth
- Bluetooth pervasive, satellites also widespread

Class Rescheduling

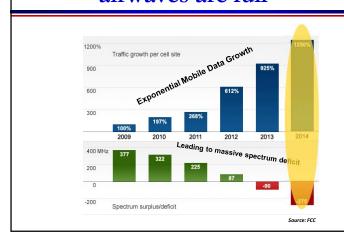

- No lectures Thu 1/16, Tue 2/4, Thu 2/20 and Thu 3/5.
- These lectures are tentatively rescheduled as:
- Lecture on Thu 1/16 is rescheduled to Fri 1/17 at lunch
- Lecture on Tue 2/4 is rescheduled to Wed 2/5 at lunch
- Lecture on Thu 2/20 is rescheduled to Fri 2/21 at lunch
- Lecture on Thu 3/5 is rescheduled to Wed 3/4 at lunch
- Last lecture on 3/12 has an optional component 11:50-12:30 on advanced topics with lunch.

10

12

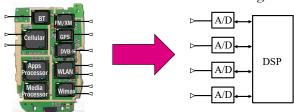

Future Wireless Networks

Ubiquitous Communication Among People and Devices


Challenges

- Network/Radio Challenges
 - Gbps data rates with "no" errors
 - Energy efficiency
 - Scarce/bifurcated spectrum
 - Reliability and coverage
 - Heterogeneous networks
 - Seamless internetwork handoff
- Device/SoC Challenges
 - Performance
 - Complexity
 - Size, Power, Cost, Energy
 - High frequencies/mmWave
 - Multiple Antennas
 - Multiradio Integration
 - Coexistance

13


"Sorry America, your airwaves are full*"

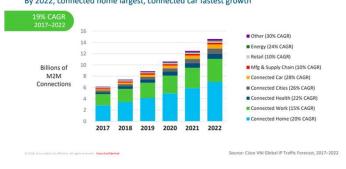
15

Software-Defined (SD) Radio:

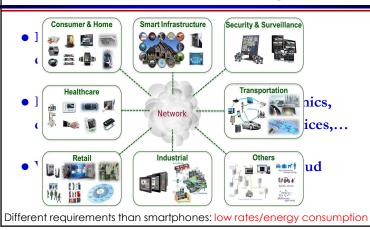
Is this the solution to the device challenges?

- Wideband antennas and A/Ds span BW of desired signals
- DSP programmed to process desired signal: no specialized HW

Today, this is not cost, size, or power efficient


SubNyquist sampling may help with the A/D and DSP requirements

14


16

On the Horizon, the Internet of Things

What is the Internet of Things:

17

What would Shannon say?

We don't know the Shannon capacity of most wireless channels

- Time-varying channels.
- Channels with interference or relays.
- Cellular systems
- Ad-hoc and sensor networks
- Channels with delay/energy/\$\$\$ constraints.

Shannon theory provides design insights and system performance upper bounds

Are we at the Shannon limit of the Physical Layer?

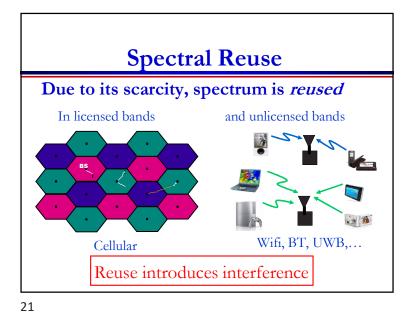
We are at the Shannon Limit

- "The wireless industry has reached the theoretical limit of how fast networks can go" K. Fitcher, Connected Planet
- "We're 99% of the way" to the "barrier known as Shannon's limit," D. Warren, GSM Association Sr. Dir. of Tech.

Shannon was wrong, there is no limit

- "There is no theoretical maximum to the amount of data that can be carried by a radio channel" M. Gass, 802.11 Wireless Networks: The Definitive Guide
- "Effectively unlimited" capacity possible via *personal* cells (pcells). S. Perlman, Artemis.

18

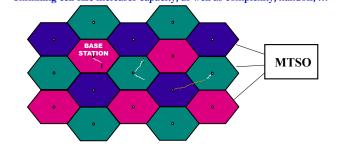

Current/Next-Gen Wireless Systems

- Current:
 - 4G Cellular Systems (LTE-Advanced)
 - 6G Wireless LANs/WiFi (802.11ax)
 - mmWave massive MIMO systems
 - Satellite Systems
 - Bluetooth
 - Zigbee
 - WiGig
- Emerging
 - 5G Cellular and 7G WiFi Systems
 - Ad/hoc and Cognitive Radio Networks
 - Energy-Harvesting Systems

• Chemical/Molecular

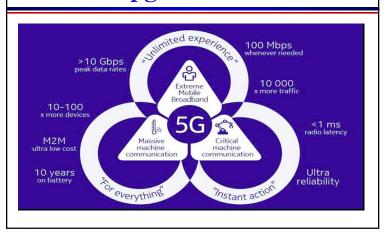
_ Much room For innovation

19



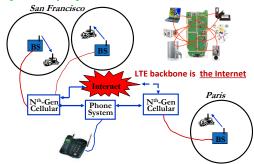
4G/LTE Cellular

- Much higher data rates than 3G (50-100 Mbps)
 - 3G systems has 384 Kbps peak rates
- Greater spectral efficiency (bits/s/Hz)
 - More bandwidth, adaptive OFDM-MIMO, reduced interference
- Flexible use of up to 100 MHz of spectrum
 - 10-20 MHz spectrum allocation common
- Low packet latency (<5ms).
- Reduced cost-per-bit (not clear to customers)
- All IP network


Cellular Systems:
Reuse channels to maximize capacity

- · Geographic region divided into cells
- Freq./timeslots/codes/space reused in different cells (reuse 1 common).
- Interference between cells using same channel: interference mitigation key
- Base stations/MTSOs coordinate handoff and control functions
- Shrinking cell size increases capacity, as well as complexity, handoff, ...

22


5G Upgrades from 4G

23

Future Cellular Phones

Burden for this performance is on the backbone network

Much better performance and reliability than today

- Gbps rates, low latency, 99% coverage, energy efficiency

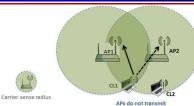
25

Wireless LAN Standards

- 802.11b (Old 1990s)
 - Standard for 2.4GHz ISM band (80 MHz)
 - Direct sequence spread spectrum (DSSS)
 - Speeds of 11 Mbps, approx. 500 ft range
- 802.11a/g (Middle Age-mid-late 1990s)
 - Standard for 5GHz band (300 MHz)/also 2.4GHz
 - OFDM in 20 MHz with adaptive rate/codes
 - Speeds of 54 Mbps, approx. 100-200 ft range
- 802.11n/ac/ax or Wi-Fi 6 (current gen)
- Standard in 2.4 GHz and 5 GHz band
 - Adaptive OFDM /MIMO in 20/40/80/160 MHz
 - Antennas: 2-4, up to 8
 - Speeds up to 1 Gbps (10 Gbps for ax), approx. 200 ft range
 - Other advances in packetization, antenna use, multiuser MIMO

Wifi Networks

Multimedia Everywhere, Without Wires



26

Why does WiFi performance suck?

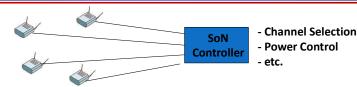
Carrier Sense Multiple Access: if another WiFi signal detected, random backoff

Collision Detection: if collision detected, resend

APs do not transmit simultaneously

- The WiFi standard lacks good mechanisms to mitigate interference, especially in dense AP deployments
 - Multiple access protocol (CSMA/CD) from 1970s
 - Static channel assignment, power levels, and sensing thresholds
 - In such deployments WiFi systems exhibit poor spectrum reuse and significant contention among APs and clients
 - Result is low throughput and a poor user experience
 - Multiuser MIMO will help each AP, but not interfering APs

27 28


Many

WLAN

cards have many

generations

Self-Organizing Networks for WiFi

- SoN-for-WiFi: dynamic self-organization network software to manage of WiFi APs.
- Allows for capacity/coverage/interference mitigation tradeoffs.
- Also provides network analytics and planning.

29

Bluetooth

- Cable replacement RF technology (low cost)
- Short range (10m, extendable to 100m)
- 2.4 GHz band (crowded)
- 1 Data (700 Kbps) and 3 voice channels, up to 3 Mbps
- Widely supported by telecommunications,
 PC, and consumer electronics companies
- Few applications beyond cable replacement

Satellite Systems

- Cover very large areas
- Different orbit heights
 - Orbit height trades off coverage area for latency
 - GEO (39000 Km) vs MEO (9000 km) vs LEO (2000 Km)
- Optimized for one-way transmission
 - Radio (XM, Sirius) and movie (SatTV, DVB/S) broadcasts
 - Most two-way LEO systems went bankrupt in 1990s-2000s
 - LEOs have resurfaced with 4G to bridge digital divide
- Global Positioning System (GPS) ubiquitous
 - Satellite signals used to pinpoint location
 - Popular in cell phones, PDAs, and navigation devices

30

IEEE 802.15.4/ZigBee Radios

- Low-rate low-power low-cost secure radio
 - Complementary to WiFi and Bluetooth
- Frequency bands: 784, 868, 915 MHz, 2.4 GHz
- Data rates: 20Kbps, 40Kbps, 250 Kbps
- Range: 10-100m line-of-sight
- Support for large mesh networking or star clusters
- Support for low latency devices
- CSMA-CA channel access
- Applications: light switches, electricity meters, traffic management, and other low-power sensors.

31

Spectrum Regulation

- Spectrum a scarce public resource, hence allocated
- Spectral allocation in US controlled by FCC (commercial) or OSM (defense)
- FCC auctions spectral blocks for set applications.
- Some spectrum set aside for universal use
- Worldwide spectrum controlled by ITU-R
- Regulation is a necessary evil.

Innovations in regulation being considered worldwide in multiple cognitive radio paradigms

33

Advanced Topics Lecture: See Backup Slides

Emerging Systems

- New cellular system architectures
- mmWave/massive MIMO communications
- Software-defined network architectures
- Ad hoc/mesh wireless networks
- Cognitive radio networks
- Wireless sensor networks
- Energy-constrained radios
- Distributed control networks
- Chemical Communications
- Applications of Communications in Health, Biomedicine, and Neuroscience

Standards

- Interacting systems require standardization
- Companies want their systems adopted as standard
 - Alternatively try for de-facto standards
- Standards determined by TIA/CTIA in US
 - IEEE standards often adopted
 - Process fraught with inefficiencies and conflicts
- Worldwide standards determined by ITU-T
 - In Europe, ETSI is equivalent of IEEE

Standards for current systems summarized in text Appendix D.

34

Main Points

- The wireless vision encompasses many exciting applications
- Technical challenges transcend all system design layers
- 5G networks must support higher performance for some users, extreme energy efficiency and/or low latency for others
- Cloud-based software to dynamically control and optimize wireless networks needed (SDWN)
- Innovative wireless design needed for 5G cellular/WiFi, mmWave systems, massive MIMO, and IoT connectivity
- Standards and spectral allocation heavily impact the evolution of wireless technology

35

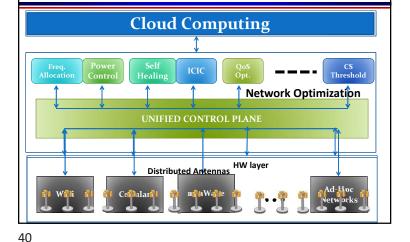
Backup Slides: Emerging Systems

37

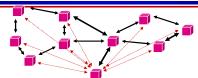
39

mmWave Massive MIMO Unlicensed 60GHz and Light Licensed E-Band 10s of GHz of Spectrum 60GHz 70/80GHz • mmWaves have large non-monotonic path loss • Channel model poorly understood • For asymptotically large arrays with channel state information, no attenuation, fading, interference or noise • mmWave antennas are small: perfect for massive MIMO • Bottlenecks: channel estimation and system complexity • Non-coherent design holds significant promise

Rethinking "Cells" in Cellular



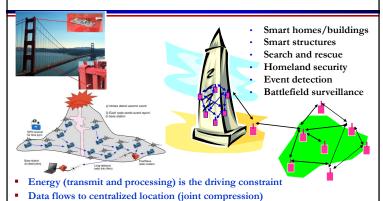
How should cellular systems be designed for


- Capacity
- Coverage
- Energy efficiency
- Low latency
- Traditional cellular design "interference-limited"
 - MIMO/multiuser detection can remove interference
 - Cooperating BSs form a MIMO array: what is a cell?
 - Relays change cell shape and boundaries
 - Distributed antennas move BS towards cell boundary
 - Small cells create a cell within a cell
 - Mobile cooperation via relays, virtual MIMO, network coding.

38

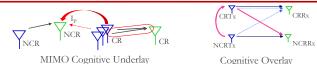
Software-Defined Network Architectures

Ad-Hoc Networks


- Peer-to-peer communications
 - No backbone infrastructure or centralized control
- Routing can be multihop.
- Topology is dynamic.
- Fully connected with different link SINRs
- Open questions
 - Fundamental capacity region

Low per-node rates but tens to thousands of nodes Intelligence is in the network rather than in the devices

- Resource allocation (power, rate, spectrum, etc.)
- Routing


41

Wireless Sensor Networks Data Collection and Distributed Control

43

Cognitive Radios

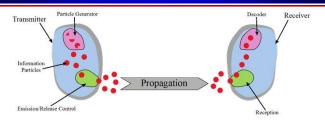
- Cognitive radios support new users in existing crowded spectrum without degrading licensed users
 - Utilize advanced communication and DSP techniques
 - Coupled with novel spectrum allocation policies
- Multiple paradigms
 - (MIMO) Underlay (interference below a threshold)
 - Interweave finds/uses unused time/freq/space slots
 - Overlay (overhears/relays primary message while cancelling interference it causes to cognitive receiver)

42

Energy-Constrained Radios

- Transmit energy minimized by sending bits slowly
 - Leads to increased circuit energy consumption
- Short-range networks must consider both transmit and processing/circuit energy.
 - Sophisticated encoding/decoding not always energyefficient.
 - MIMO techniques not necessarily energy-efficient
 - Long transmission times not necessarily optimal
 - Multihop routing not necessarily optimal
 - Sub-Nyquist sampling can decrease energy and is sometimes optimal!

Where should energy come from?



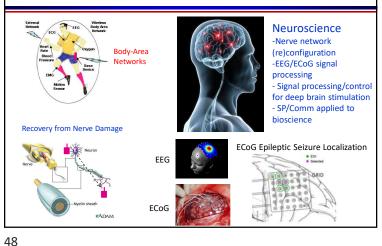
- · Batteries and traditional charging mechanisms
 - · Well-understood devices and systems
- Wireless-power transfer
 - · Poorly understood, especially at large distances and with high efficiency
- Communication with Energy Harvesting Radios
 - Intermittent and random energy arrivals
 - · Communication becomes energy-dependent
 - Can combine information and energy transmission
 - · New principles for radio and network design needed.

45

47

Chemical Communications

- Can be developed for both macro (>cm) and micro (<mm) scale communications
- Greenfield area of research:
 - Need new modulation schemes, channel impairment mitigation, multiple acces, etc.


Distributed Control over Wireless

- Control requires fast, accurate, and reliable feedback.
- · Wireless networks introduce delay and loss
- Need reliable networks and robust controllers
- Mostly open problems: Many design challenges

46

Applications in Health, Biomedicine and Neuroscience

