EE359 – Lecture 10 Outline

- Announcements:
 - Project proposals due tomorrow midnight (post, email link)
 - New reader available tonight
 - Midterm will be Feb. 21, 2-4pm
 - No HW that week, may extend next week's HW deadline
 - Exam open book/notes, covers thru Chp. 7.
 - Midterm review date/time TBD
 - SCPD students can take exam on campus or remotely
 - More MT announcements next week (practice MTs)
- MGF approach for average P_s
- Combined average and outage Ps
- Doppler and delay spread effect on error probability
- Introduction to diversity
- Combining techniques

1

Review Continued: Average P_s

- ullet Expected value of random variable P_s
- Used when $T_c \sim T_s$
- Error probability much higher than in AWGN alone
- Rarely obtain average error probability in closed form
 - Probability in AWGN is Q-function, double infinite integral

Review of Last Lecture

- Focus on linear modulation
- P_s approximation in AWGN: $P_s \approx \alpha_M Q \sqrt{\beta_M \gamma_s}$
 - Nearest neighbor error dominates $Q\left(\frac{d_{v_{i,j}}^2}{N_{i,j}}\right) > Q\left(\frac{d^2}{N_{i,j}}\right)$ for $d_{v_{i,j}} < d_{v_{i,j}} < d_{v_{i,j}} < d_{v_{i,j}} < d_{v_{i,j}}$
- Probability of error in fading is random
 - Characterized by outage, average Ps, combination
- Outage probability P_{s} Used when $T_c >> T_s$ t or d
 - Probability P_s is above target; Probability γ_s below target
- Fading severely degrades performance

2

Average Probability of Error

Fading severely degrades performance

3

Alternate Q Function Analysis

• Traditional Q function representation

$$Q(z) = p(x > z) = \int_{z}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx, \quad x \sim N(0,1)$$

- Infinite integrand, argument in integral limits
- Average P_o entails infinite integral over Q(z)
- Craig's representation: $Q(z) = \frac{1}{\pi} \int_0^{\pi/2} e^{-z^2/(\sin^2 \varphi)} d\varphi$
 - Very useful in fading and diversity analysis
 - AWGN formula: $P_s(\gamma_s) \cong \alpha Q(\sqrt{\beta \gamma_s})$
 - Fading formula:

• Fading formula:
$$\overline{P}_{s} = \frac{\alpha}{\pi} \int_{0}^{\pi/2} \mathcal{M}_{\gamma_{s}} \left(\frac{-.5\beta}{\sin^{2} \phi} \right) d\phi$$

$$M_{\gamma_{s}} \text{ is MGF of fading pdf of } \gamma_{s};$$

$$\alpha, \beta, \text{ depend on modulation}^{*}$$
*current reader has .5 β =g notation

5

Delay Spread (ISI) Effects

• Delay spread exceeding a symbol time causes ISI (self interference).

- ISI leads to irreducible error floor: $\overline{P}_{b,floor} \approx (\sigma_{T_m}/T_s)^2$
 - Increasing signal power increases ISI power
- ISI imposes data rate constraint: $T_s >> T_m$ ($R_s << B_c$) $R \le \log_2(M) \times \sqrt{\overline{P}_{b,floor}/\sigma_{T_m}^2}$

Combined outage and average P_s

- Used in combined shadowing and flat-fading
- \bullet \overline{P}_s varies slowly, locally determined by flat fading
- Declare outage when \overline{P}_s above target value

6

Doppler Effects

Chap. 6.4 Cover in HW not lecture

- High doppler causes channel phase to decorrelate between symbols
- Leads to an irreducible error floor for differential modulation
 - Increasing power does not reduce error
- Error floor depends on f_DT_b as

$$P_{floor} = \frac{1 - J_0(2\pi f_D T_b)}{2} \approx .5(\pi f_D T_b)^2$$

7

Introduction to Diversity

- Basic Idea
 - Send same bits over independent fading paths
 - Independent fading paths obtained by time, space, frequency, or polarization diversity
 - Combine paths to mitigate fading effects

Multiple paths unlikely to fade simultaneously

Main Points

- Fading greatly increases average P_s or required power for a given target \vec{P}_s with some outage
- Alternate Q function approach simplifies P_s calculation, especially its average value in fading
 Average P_s becomes a Laplace transform.

10

- In fast/slow fading, outage due to shadowing, probability of error averaged over fast fading pdf
- Need to combat flat fading or waste lots of power
 - Adaptive modulation and diversity are main techniques to combat flat fading: adapt to fading or remove it
- Delay spread causes irreducible error floor at high data rates
 - Doppler causes irreducible error floor at low data rates
- Diversity overcomes fading effects by combining fading paths
 - Typically entails penalty in rate, bandwidth, complexity, or size.