EE359 – Lecture 10 Outline

• **Announcements:**

 • Project proposals due Friday **midnight** (post, email link)

 • Midterm will be Nov. 10 6-8pm

 • No HW due that week.

 • Exam open book/notes, covers thru Chp. 7.

 • Midterm review date/time TBD. Brief in-class summary as well

 • SCPD students can take exam on campus or remotely

 • More MT announcements next week (practice MTs)

• **Average $P_s (P_b)$**

• **MGF approach for average P_s**

• **Combined average and outage P_s**

• **Effects of delay spread on error probability**
Review of Last Lecture

- Focus on linear modulation
- P_s approximation in AWGN:
 - Nearest neighbor error dominates
- Probability of error in fading is random
 - Characterized by outage, average P_s, combination
- Outage probability

\[
P_s \approx \alpha M Q \left(\sqrt{\beta M \gamma_s} \right)
\]

- Probability P_s is above target; Probability γ_s below target
- Fading severely degrades performance
Average \(P_s \)

- Expected value of random variable \(P_s \)
- Used when \(T_c \sim T_s \)
- Error probability much higher than in AWGN alone
- Rarely obtain average error probability in closed form
 - Probability in AWGN is Q-function, double infinite integral

\[
\overline{P}_s = \int P_s(\gamma_s) p(\gamma_s) d\gamma_s
\]
Alternate Q Function Representation

- Traditional Q function representation
 \[Q(z) = p(x > z) = \int_{z}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dx, \quad x \sim N(0,1) \]
 - Infinite integrand, argument in integral limits
 - Average \(P_e \) entails infinite integral over \(Q(z) \)

- Craig’s representation:
 \[Q(z) = \frac{1}{\pi} \int_{0}^{\pi/2} e^{-z^2/(\sin^2 \varphi)} \, d\varphi \]
 - Very useful in fading and diversity analysis

\[
\overline{P}_s = \frac{\alpha}{\pi} \int_{0}^{\pi} M_{\gamma_s} \left(\frac{-g}{\sin^2 x} \right) dx
\]
\(M_{\gamma_s} \text{ is MGF of fading distribution} \)
\(\gamma_s, g \text{ depends on modulation} \)
Combined outage and average P_s

- Used in combined shadowing and flat-fading
- \overline{P}_s varies slowly, locally determined by flat fading
- Declare outage when \overline{P}_s above target value
Delay Spread (ISI) Effects

- Delay spread exceeding a symbol time causes ISI (self interference).

- ISI leads to irreducible error floor:
 \[\overline{P}_{b, floor} \approx (\sigma T_m / T_s)^2 \]
 - Increasing signal power increases ISI power

- ISI imposes data rate constraint:
 \[T_s >> T_m \quad (R_s << B_c) \]
 \[R \leq \log_2(M) \times \sqrt{\overline{P}_{b, floor} / \sigma^2_{T_m}} \]
Main Points

- Fading greatly increases average P_s or required power for a given target P_s with some outage
- Alternate Q function approach simplifies P_s calculation, especially its average value in fading
 - Average P_s becomes a Laplace transform.
- In fast/slow fading, outage due to shadowing, probability of error averaged over fast fading pdf
- Need to combat flat fading or waste lots of power
 - Adaptive modulation and diversity are main techniques to combat flat fading: adapt to fading or remove it
- Delay spread causes an irreducible error floor at high data rates