ISI Effects. Diversity.

Lecture Outline

- Delay Spread (ISI) Performance Effects
- Introduction to Diversity
- Selection Combining (SC) and its Performance
- Maximal Ratio Combining (MRC)
- Performance of MRC with i.i.d. Rayleigh fading

 - Delay spread exceeding a symbol time causes ISI (self-interference).
 - ISI leads to an irreducible error floor. Approximated as $P_{b,floor} \approx (\sigma T_m/T_s)^2$.
 - Without ISI compensation, avoid error floor by reducing data rate: $T_s >> T_m$ or $R \leq \log_2(M) \times \sqrt{P_{b,floor}/\sigma^2 T_m}$.

2. Introduction to Diversity
 - Basic concept is to send same information over independent fading paths.
 - Paths are combined to mitigate the effects of fading.

3. Realization of Independent Fading Paths
 - Space Diversity: Multiple antenna elements spaced apart by decorrelation distance.
 - Polarization Diversity: Two antennas, one horizontally polarized and one vertically polarized.
 - Frequency diversity: Multiple narrowband channels separated by channel coherence bandwidth.
 - Time diversity: Multiple timeslots separated by channel coherence time.

4. Array and Diversity Gain
 - Array gain is the gain in SNR from noise averaging over the multiple antennas. Gain in both AWGN and fading channels.
 - Diversity gain is the change in slope of the probability of error due to diversity. Only applies to fading channels.

5. Techniques for Combining Independent Fading Paths
 - Selection Combining: largest fading path chosen.
 - Maximal Ratio Combining: all paths cophased and summed with optimal weighting to maximize SNR at combiner output.
 - Equal Gain Combining: all paths cophased and summed with equal weighting.
We use space diversity as a reference for analysis; same analysis applies for any mechanism used to obtain independent fading paths.

6. **Selection Combining (SC) and its Performance**
 - Combiner SNR γ_Σ is the maximum of the branch SNRs.
 - This gives diminishing returns, in terms of power gain, as the number of antennas increases.
 - CDF of γ_Σ easy to obtain, then pdf found by differentiating.
 - Typically get 10-15 dB of gain for 2-3 antennas.

7. **Maximal Ratio Combining (MRC)**
 - Branch weights optimized to maximize output SNR of combiner.
 - Optimal weights are proportional to branch SNR.
 - Resulting combiner SNR γ_Σ is sum of branch SNRs.
 - Distribution obtained by characteristic function analysis (can be hard).

8. **Performance of MRC with i.i.d. Rayleigh fading**
 - For M branch diversity with i.i.d. Rayleigh fading on each branch, γ_Σ is chi-squared with $2M$ degrees of freedom.
 - Can obtain P_{out} and P_s from this distribution.
 - For BPSK, get 15 dB gain at 10^{-3} BER. Larger gains obtained at lower BERs.

Main Points

- ISI leads to an irreducible error floor at high data rates - much work on ISI mitigation in current systems.
- Diversity is a powerful technique to overcome the effects of flat fading by combining multiple independent fading paths.
- Diversity typically entails some penalty in terms of rate, bandwidth, complexity, or size.
- Both selection combining and MRC significantly reduce the impact of fading.
- SC vs. MRC offer different levels of complexity vs. performance.
- Performance analysis of MRC greatly simplified using MGF approach.