EE359 – Lecture 13 Outline

- Announcements
 - Midterm announcements
 - No HW this week
- Introduction to adaptive modulation
- Variable-rate variable-power MQAM
- Optimal power and rate adaptation
- Finite constellation sets

1

3

Adaptive Modulation

- Change modulation relative to fading
- Parameters to adapt:
 - Constellation size
 - Transmit power
 - Instantaneous BER
 - Symbol time
 - Coding rate/scheme

Only 1-2 degrees of freedom needed for good performance

- Optimization criterion:
 - Maximize throughput
 - Minimize average power
 - Minimize average BER

Midterm Announcements

- Midterm: Friday (2/21), 2-4 pm in Hewlett 103
 - Food will be served after the exam!
- Review sessions
 - TA review (+OHs): Wednesday 2/19 from 4-6 pm in 364 Packard
- Midterm logistics:
 - Open book/notes; Bring reader/calculators.
 - Disconnected electronic devices OK. No Matlab.
 - Covers Chapters 1-7 (sections covered in lecture and/or HW)
- OHs this week:
- Me: Tue 2/18: 3-4pm (or later), Thu 6-7pm (or later), Fri 10:30-11:30am, 371 Packard
- Tom: Wed ~5-6pm, Thu 1:30-2:50pm, Fri 11:30-12:30pm
- No HW this week
- Midterms from past 3 MTs posted:
 - 10 bonus points for "taking" a practice exam
 - Solutions for all exams given when you turn in practice exam

2

Variable-Rate Variable-Power MQAM

Optimization Formulation

• Adaptive MQAM: Rate for fixed BER

$$M(\gamma) = 1 + \frac{1.5\gamma}{-\ln(5BER)} \frac{P(\gamma)}{\overline{P}} = 1 + K\gamma \frac{P(\gamma)}{\overline{P}}$$

• Rate and Power Optimization

$$\max_{P(\gamma)} E \log_2[M(\gamma)] = \max_{P(\gamma)} E \log_2 \left[1 + K\gamma \frac{P(\gamma)}{\overline{P}} \right]$$

Same maximization as for capacity, except for K=-1.5/ln(5BER).

5

Spectral Efficiency

7

Optimal Adaptive Scheme

• Power Adaptation

 $\frac{P(\gamma)}{\overline{P}} = \begin{cases} \frac{1}{\gamma_0} - \frac{1}{\gamma K} & \gamma \ge \frac{\gamma_0}{K} = \gamma_K \\ 0 & \text{else} \end{cases}$

• Spectral Efficiency

$$\frac{R}{B} = \int_{\gamma_E}^{\infty} \log_2\left(\frac{\gamma}{\gamma_E}\right) p(\gamma) d\gamma.$$

Equals capacity with effective power loss K=-1.5/ln(5BER).

6

Constellation Restriction

- Restrict $M_D(\gamma)$ to $\{M_0=0,...,M_N\}$.
- Let $M(\gamma) = \gamma/\gamma_K^*$, where γ_K^* is optimized for max rate
- Set $M_D(\gamma)$ to $\max_i M_i$: $M_i \le M(\gamma)$ (conservative)
- Region boundaries are $\gamma_i = M_i \gamma_K^*, j = 0,...,N$
- Power control maintains target BER

Power Adaptation and Average Rate

• Power adaptation:

• Fixed BER within each region

• $E_s/N_0=(M_i-1)/K$

• Channel inversion within a region

• Requires power increase when increasing $M(\gamma)$

$$\frac{P_{j}(\gamma)}{P} = \begin{cases} (M_{j} - 1)/(\gamma K) & \gamma_{j} \leq \gamma < \gamma_{j+1}, j > 0 \\ 0 & \gamma < \gamma_{1} \end{cases}$$

• Average Rate

$$\frac{R}{B} = \sum_{j=1}^{N} \log_2 M_j p(\gamma_j \le \gamma < \gamma_{j+1})$$
• Practical Considerations:

• Update rate/estimation error and delay

9

Main Points

• Adaptive modulation leverages fast fading to improve performance (throughput, BER, etc.)

• Adaptive MQAM uses capacity-achieving power and rate adaptation, with power penalty K.

• Comes within 5-6 dB of capacity

• Discretizing the constellation size results in negligible performance loss.

• Constellations cannot be updated faster than 10s to 100s of symbol times: OK for most dopplers.

• Estimation error/delay causes error floor

10