EE359 - Lecture 14 Outline

- Announcements:
 - MT today, 2-4pm, 103 Hewlitt, pizza afterwards
 - HW posted today, due next Friday
- Discrete-Rate Adaptive Modulation
- Introduction to MIMO Communications
- MIMO Channel Decomposition
- MIMO Channel Capacity
- MIMO Beamforming

1

Review continued

Constellation Restriction

- Restrict $M_D(\gamma)$ to $\{M_0=0,...,M_N\}$.
- Let $M(\gamma) = \gamma/\gamma_K^*$, where γ_K^* is optimized for max rate
- Set $M_D(\gamma)$ to $\max_i M_i$: $M_i \le M(\gamma)$ (conservative)
- Region boundaries are $\gamma_j = M_j \gamma_K^*, j = 0,...,N$

• Power control maintains target BER

Review of Last Lecture

- Introduction to adaptive modulation
 - Vary different parameters of modulation relative to fading
- Variable-rate variable-power MQAM
 - Maximize average throughput by changing rate and power
 - Optimal power adaptation is water-filling

$$\frac{P(\gamma)}{\overline{P}} = \begin{cases} \frac{1}{\gamma_0} - \frac{1}{\gamma K} & \gamma \ge \frac{\gamma_0}{K} = \gamma_F \\ 0 & \text{else} \end{cases}$$

7/k y

• Optimal rate adaptation:

$$\frac{R}{B} = \int_{\gamma_K}^{\infty} \log_2\left(\frac{\gamma}{\gamma_K}\right) p(\gamma) d\gamma.$$

Equals capacity with effective power loss K=-1.5/ln(5BER).

2

Power Adaptation and Average Rate

- Power adaptation: Fixed BER within each region
 - $\bullet E_s/N_0=(M_i-1)/K$
 - Channel inversion within a region
 - Requires power increase when increasing M(γ)

$$\frac{P_{j}(\gamma)}{P} = \begin{cases} (M_{j} - 1)/(\gamma K) & \gamma_{j} \le \gamma < \gamma_{j+1}, j > 0 \\ 0 & \gamma < \gamma, \end{cases}$$

Average Rate

$$\frac{R}{B} = \sum_{i=1}^{N} \log_2 M_j p(\gamma_j \le \gamma < \gamma_{j+1})$$

- Practical Considerations (not covered in lecture):
 - Cannot update more than every 10-100 symbols
 - Estimation error/delay leads to irreducible error floor

3

Efficiency in Rayleigh Fading

5

MIMO Decomposition

 Decompose channel through transmit precoding (x=Vx) and receiver shaping (y=U^Hy)

- Leads to R_H≤min(M_t,M_r) independent channels with gain σ_i (ith singular value of H) and AWGN
- Independent channels lead to simple capacity analysis and modulation/demodulation design

Multiple Input Multiple Output (MIMO)Systems

• MIMO systems have multiple transmit and receiver antennas (M, at TX, M, at RX)

- Input described by vector x of dimension M,
- Output described by vector y of dimension M_r
- Channel described by M,xM, matrix
- Design and capacity analysis depends on what is known about channel *H* at TX and RX
 - If H unknown at TX, requires vector modulation/demod

6

MIMO Fading Channel Capacity

- If channel H known, waterfill over space (fixed power at each time instant) or space-time
- Without transmitter channel knowledge, capacity is based on an outage probability
 - P_{out} is probability that channel capacity given the channel realization is below the transmission rate C

$$p_{out} = p\left(\mathbf{H} : B \log_2 \det \left[\mathbf{I}_{M_r} + \frac{\rho}{M_t} \mathbf{H} \mathbf{H}^H\right] < C\right)$$

 Massive MIMO: random channel gains converge to static values: C = min(M_DM_r) Blog(1+ρ); ρ is SNR

$$\lim_{M_t \rightarrow \infty} B \log_2 \det \left[\mathbf{I}_{M_r} + \frac{\rho}{M_t} \mathbf{H} \mathbf{H}^H \right] = B \log_2 \det \left[\mathbf{I}_{M_r} + \rho \mathbf{I}_{M_r} \right] = M_r B \log_2 (1 + \rho)$$

7

Main Points

- Discretizing the constellation size in adaptive MQMA results in negligible performance loss.
 - Constellations cannot be updated faster than 10s to 100s of symbol times: OK for most dopplers.
 - Estimation error/delay causes error floor
- MIMO systems exploit multiple antennas at both TX and RX for capacity and/or diversity gain
- With TX/RX CSI, decomposes into independent channels
- Capacity of MIMO systems
 - Static channel with TX/RX CSI: sum of capacity on each spatial dimension
 - Static channel without TX CSI: capacity metric is outage.
 - Fading channel with TX/RX CSI: water-fill power over space or space-time to achieve capacity
 - With only RX CSI, capacity metric is outage.
 - Massive MIMO: $C = min(M_t, M_r) Blog(1+\rho)$