MIMO RX Design, ISI Mitigation Techniques, Multicarrier Modulation and OFDM

Lecture Outline

1. MIMO Receiver Design
 - Optimal MIMO receiver is maximum-likelihood (ML) receiver. Finds input vector \mathbf{x} that minimizes $|\mathbf{y} - \mathbf{Hx}|_F^2$ for $| \cdot |_F$ the Frobenius (matrix) norm.
 - This receiver is exponentially complex in the constellation size and number of transmitted data streams.
 - Can reduce complexity through linear processing of input vector \mathbf{Ax}.
 - Zero-forcing receiver forces all interference from other symbols to zero. This can result in significant noise enhancement.
 - MMSE receiver: trades off cancellation of interference from other symbols for noise enhancement. Reduces to zero forcing in the absence of noise.
 - Sphere Decoder: Approximates ML decoder, but only considers symbols that would result in an output, in the absence of noise, within a radius r of the received vector. Can trade performance for complexity via choice of r. Decoding reduces to different methods for pruning the tree of possible inputs to be within the given radius (e.g. depth-first versus breadth-search versus other tree search algorithms have different performance tradeoffs).

2. ISI Countermeasures:
 - Equalization: signal processing at receiver to remove ISI. Too complex for high-speed systems with large delay spread.
 - Multicarrier modulation: send data over independent subcarriers at slow enough rate such that they experience flat-fading.
 - Spread spectrum modulation: Use properties of spreading codes to remove or coherently combine ISI at receiver.
 - Use directional antennas to reduce delay spread and ISI.
3. Multicarrier Modulation (MCM):
 - Mitigates ISI by dividing the transmit bit stream into N substreams.
 - Each substream modulated by a separate subcarrier with signal bandwidth B/N.
 - N is made sufficiently large so that $B/N < B_c$, so substreams experience flat-fading.
 - MCM can be implemented using frequency division multiplexing.

4. Overlapping Subcarriers
 - More bandwidth-efficient implementation (OFDM) than MCM overlaps the transmitted substreams such that they can be separated at the receiver.
 - For rectangular pulses, minimum required separation is B/N. Can be less if phases of subcarriers are aligned.

Main Points

- MIMO RX design trades complexity for performance. ML detector is optimal but exponentially complex. Linear decoders enhance noise. Sphere decoders allow performance vs. complexity tradeoff via radius; most common technique in practice.
- ISI typically mitigated by equalization, multicarrier modulation, spread spectrum, or antenna techniques. Equalization not used in current wireless standards due to complexity.
- Multicarrier modulation splits data into narrowband (flat-fading) substreams.
- Multicarrier modulation made more bandwidth efficient by overlapping subchannels.