EE359 - Lecture 16 Outline

- Announcements:
 - HW due Fri, new HW to be posted today
 - End-of-Quarter schedule and possible bonus lecture
 - No lecture March 5, makeup lecture Monday March 2, 10:30-11:50, Gates B03
 - Advanced topics lecture? Could extend last class March 12 to 3:30 (i.e. 1:30-3:30)
 - Final exam: Tues March 17, 3:30-6:30pm, here. More details next week.
- MIMO Receiver Design
 - Linear Receivers, Sphere Decoder
- Other MIMO Design Issues
 - Space-time coding, adaptive techniques, limited feedback
- ISI Countermeasures
- Multicarrier Modulation

1

Review of Last Lecture (Cont'd)

- Beamforming: Scalar transmission
 - Principle vectors of U and V are weights: maximizes SNR

- Diversity-Multiplexing Tradeoff: high SNR
 - •Can use some antennas for diversity, some for capacity gain: $d^*(r) = (M_t r)(M_r r)$
 - •How antennas used depends on system metric
 - •If requirements unmet, need more antennas

Review of last lecture

Capacity of Fading & Massive MIMO Systems

- Static channel with perfect TX and RX CSI: water-fill over space
- In fading waterfill over space (based on instantaneous power constraint P)

$$C = \mathrm{E}_{\mathbf{H}} \left[\max_{\mathbf{R}_{\mathbf{x}}: \mathrm{Tr}(\mathbf{R}_{\mathbf{x}}) = \rho} B \log_2 \det \left[\mathbf{I}_{\mathbf{M}_{\mathbf{r}}} + \mathbf{H} \mathbf{R}_{\mathbf{x}} \mathbf{H}^{\mathbf{H}} \right] \right] = \mathrm{E}_{\mathbf{H}} \left[\max_{P_i: \Sigma_i P_i \leq \bar{P}} \sum_i B \log_2 \left(1 + \frac{P_i \gamma_i}{\bar{P}} \right) \right]$$

• Or over space-time (with average power constraint P)

$$C = \max_{P_{ii}: E_{ii}[P_{ii}] \le \overline{P}} E_{ii} \left[\max_{P_i: \sum_i P_i \le P_{ii}} \sum_i B \log_2 \left(1 + \frac{P_{ii}}{P_{ii}} \right) \right]$$

 Without transmitter channel knowledge, capacity metric is based on an outage probability with respect to transmitted rate C:

$$P_{\text{out}} = p\left(\mathbf{H}: B \log_2 \det \left[\mathbf{I}_{M_r} + \frac{\rho}{M_t} \mathbf{H} \mathbf{H}^H\right] < R\right)$$

• Massive MIMO: As $M_t \rightarrow \infty$, by random matrix theory

$$\lim_{M_t \to \infty} B \log_2 \det \left[\mathbf{I}_{M_r} + \frac{\rho}{M_t} \mathbf{H} \mathbf{H}^H \right] = B \log_2 \det \left[\mathbf{I}_{M_r} + \rho \mathbf{I}_{M_r} \right] = M_r B \log_2 (1 + \rho).$$

2

MIMO RX Design

- Optimal Receiver is ML: finds input vector x most likely to have resulted in y=Hx+n, exponentially complex in M_t
- Linear Receivers: performs linear equalization $\tilde{x} = Ay$ then quantizes \tilde{x} to nearest constellation point $x \in X^{M_i}$
 - Zero-Forcing (A = H[†], the Moore-Penrose pseudo inverse of H):
 (if H invertible, equals inverse, else H[†] = (H^HH)⁻¹H^H); forces off-diagonal terms to zero (x̄ = x + ñ; ñ = H[†]n, enhances noise)
 - Minimum Mean Square Error ($A = H^H(HH^H + \lambda I)^{-1}$): $\lambda^{\infty}1/SNR$ Balances zero forcing against noise enhancement
- Sphere Decoder: Uses QR decomposition of H
 - Considers possibilities within sphere of transformed received symbol.
 - If minimum distance symbol is within sphere, optimal, otherwise null is returned

 $\hat{x} = \arg\min|y - Hx|^2$

 $\hat{x} = \underset{x:|Q^{H}y - Rx| < r}{\operatorname{arg \, min}} |Q^{H}y - Rx|^{2}$ $Q^{H}y = Rx + Q^{H}n$

3

Other MIMO Design Issues Not covered in lecture/HW/exams

- Space-time coding:
 - Map symbols to both space and time via space-time block and convolutional codes.
 - For OFDM systems, codes are also mapped over frequency tones.
- Adaptive techniques:
 - Need fast and accurate channel estimation
 - Adapt the use of transmit/receive antennas
 - Adapting modulation and coding.
- Limited feedback transmit precoding:
 - Partial CSI introduces interference in parallel decomp: can use interference cancellation at RX
 - TX codebook design for quantized channel

5

Multicarrier Modulation

- Breaks data into N substreams
- Substream modulated onto separate carriers
 - Substream passband BW is B/N for B total BW
 - B/N<B_c implies flat fading on each subcarrier (no ISI)

ISI Countermeasures

- Equalization
 - Signal processing at receiver to eliminate ISI
 - Complex at high data rates, performs poorly in fast-fading
 - Not used in state-of-the-art wireless systems
- Multicarrier Modulation
 - Break data stream into lower-rate substreams modulated onto narrowband flat-fading subchannels
- Spread spectrum
 - Superimpose a fast (wideband) spreading sequence on top of data sequence, allows resolution for combining or attenuation of multipath components.
- Antenna techniques (Massive MIMO)
 - (Highly) directional antennas reduce delay spread/ISI

6

Overlapping Substreams

- Can have completely separate subchannels
 - Required passband bandwidth is B.
- OFDM overlaps substreams
 - Substreams (symbol time T_N) separated in RX
 - $\begin{tabular}{l} \bullet \begin{tabular}{l} Minimum substream separation is $1/T_N$ for rectangular pulses \\ \end{tabular}$
 - Total required bandwidth is B/2

7

8

Main Points

- MIMO RX design trades complexity for performance
 - ML detector optimal exponentially complex
 - DF receivers prone to error propagation
 - Sphere decoders allow performance tradeoff via radius
- Other MIMO design issues include space-time coding, adaptation, codebooks for limited feedback
- ISI mitigated through equalization, multicarrier modulation (MCM) or spread spectrum
 - Today, equalizers often too complex or can't track channel.
 - MCM splits channel into NB flat fading subchannels
 - Can overlap subcarriers to preserve bandwidth