MIMO RX Design, ISI Mitigation Techniques, Multicarrier Modulation and OFDM

Lecture Outline

- MIMO RX Design
- ISI Mitigation Techniques
- Multicarrier Modulation
- Overlapping Subcarriers and OFDM

1. MIMO Receiver Design: Maximum Likelihood Receiver

• Optimal MIMO receiver is maximum-likelihood (ML) receiver solves the following problem.

$$\hat{\mathbf{x}}(\mathbf{y}) = \operatorname{argmin}_{\mathbf{x} \in \mathcal{X}^{\mathbf{M_t}}} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2.$$

- Must search over all possible $\mathbf{x} \in \mathcal{X}^{\mathbf{M_t}}$, i.e. over all possible transmitted vectors which has exponential complexity in M_t and in the constellation size.
- Alternate approaches using linear processing of input vector Ax.

2. Linear MIMO Receivers:

- Multiplies y with a MIMO equalization matrix $\mathbf{A} \in \mathbf{C}^{\mathbf{M_t} \times \mathbf{M_r}}$ to get $\tilde{\mathbf{x}}(\mathbf{y}) \in \mathbf{C}^{\mathbf{M_t}}$.
- Zero-forcing receiver forces all interference from other symbols to zero:

$$\tilde{\mathbf{x}}(\mathbf{y}) = \mathbf{H}^{\dagger} \mathbf{y},$$

where \mathbf{H}^{\dagger} is $\mathbf{H^{-1}}$ if the matrix is square and invertible, otherwise we use the **pseudo** inverse.

- When $M_t \leq M_r$, and there are at least M_t linearly independent columns in **H** (typical for many propagation environments), the pseudo inverse (Moore-Penrose pseudoinverse) is $\mathbf{H}^{\dagger} = (\mathbf{H}^{\mathbf{H}}\mathbf{H})^{-1}\mathbf{H}^{\mathbf{H}}$.
- Complexity of obtaining \mathbf{H}^{\dagger} is roughly cubic in M_t for square matrices. However obtaining $\hat{\mathbf{x}}(\mathbf{y})$ from $\tilde{\mathbf{x}}(\mathbf{y})$ is linear in M_t . ZF can result in significant noise enhancement.
- L-MMSE receiver: trades off cancellation of interference from other symbols for noise enhancemen with a regularization term that depends on SNR. The solution is

$$\tilde{\mathbf{x}}(\mathbf{y}) = (\mathbf{H}^{\mathbf{H}}\mathbf{H} + \lambda \mathbf{I})^{-1}\mathbf{H}^{\mathbf{H}}\mathbf{y} = \mathbf{H}^{\mathbf{H}}(\mathbf{H}\mathbf{H}^{\mathbf{H}} + \lambda \mathbf{I})^{-1}\mathbf{y},$$

which reduces to zero forcing in the absence of noise (infinite SNR).

• Compared to the ML detector, both the ZF and MMSE linear detectors are simpler to implement, but their BER performances are worse.

3. Sphere Decoder:

- A nonlinear technique that allows for better performance than a linear detector and a simple mechanism to trade off between complexity and performance
- Uses upper triangular decomposition of $\mathbf{H} = \mathbf{Q}\mathbf{R}$, where \mathbf{Q} is unitary and \mathbf{R} is upper triangular to reduce complexity.
- Sphere decoder solves the following problem:

$$\hat{\mathbf{x}}(\mathbf{y}) = \mathbf{argmin}_{\mathbf{x} \in \mathcal{X}^{\mathbf{M}_t}, \|\mathbf{Q}^{\mathbf{H}}\mathbf{y} - \mathbf{R}\mathbf{x}\| \leq r} \|\mathbf{Q}^{\mathbf{H}}\mathbf{y} - \mathbf{R}\mathbf{x}\|^2$$

- Choosing $r = \infty$ gives us the ML decoder. For r finite, the solver can exploit the upper triangular nature of \mathbf{R} to "prune" many candidate solutions (using depth-first-search or breadth-first-search or a combination of the two), thereby reducing the detection complexity significantly.
- If the sphere decoder finds a valid solution, it is the same solution that the ML detector would have returned.

4. ISI Countermeasures:

- Equalization: signal processing at receiver to remove ISI. Too complex for high-speed systems with large delay spread.
- Multicarrier modulation: send data over independent subcarriers at slow enough rate such that they experience flat-fading.
- Spread spectrum modulation: Use properties of spreading codes to remove or coherently combine ISI at receiver.
- Use directional antennas to reduce delay spread and ISI.

5. Multicarrier Modulation (MCM):

- Mitigates ISI by dividing the transmit bit stream into N substreams.
- Each substream modulated by a separate subcarrier with signal bandwidth B/N.
- N is made sufficiently large so that $B/N < B_c$, so substreams experience flat-fading.
- MCM can be implemented using frequency division multiplexing.

6. Overlapping Subcarriers

- More bandwidth-efficient implementation (OFDM)than MCM overlaps the transmitted substreams such that they can be separated at the receiver.
- For rectangular pulses, minimum required separation is B/N. Can be less if phases of subcarriers are aligned.

Main Points

- MIMO RX design trades complexity for performance. ML detector is optimal but exponentially complex. Linear decoders enhance noise. Sphere decoders allow performance vs. complexity tradeoff via radius; most common technique in practice.
- ISI typically mitigated by equalization, multicarrier modulation, spread spectrum, or antenna techniques. Equalization not used in current wireless standards due to complexity.
- Multicarrier modulation splits data into narrowband (flat-fading) substreams.
- Multicarrier modulation made more bandwidth efficient by overlapping subchannels.