# EE359 – Lecture 17 Outline

- Announcements:
  - new HW posted, due Friday
  - End-of-Quarter schedule and possible bonus lecture
    - No lecture March 5
    - Advanced topics lecture; will extend last class March 12 (1-2:50 or 1:30-3:30)
    - Final exam: Tues March 17, 3:30-6:30pm, here. More details soon
- FFT implementation of MCM (OFDM)
- Implementation Challenges in OFDM
- Fading across Subcarriers
- MIMO-OFDM

1

# How does this reduce search complexity?

 $\hat{x} = \arg\min |Q^H y - Rx|^2$  $\hat{x} = \arg\min |y - Hx|$  $x:|Q^H y - Rx| < r$ Need to compute  $|Q^h y - Rx| \forall x \in X^{M_t}$  to see if less than r

• Use tree search and upper triangular properties of R to prune search for  $x=(x_1,x_2,x_3,...,x_N)$ 

If  $|Q^h y - r_{II} x_I| > r$ , prune entire branch  $\begin{bmatrix} r_{22} & r_{23} \\ 0 & r_{33} \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \end{bmatrix}$ 

# **Review of Last Lecture**

- MIMO RX Design (see supplemental handout):
  - Optimal Receiver is ML: finds input symbol most likely to have resulted in received vector, exponentially complex in M<sub>t</sub>
  - Linear Receivers: First performs linear equalization:  $\tilde{x} = Ay$ then quantizes  $\tilde{x}$  to nearest constellation point  $x \in X^{M_t}$ 
    - Zero-Forcing ( $A = H^{\dagger}$ , the Moore-Penrose pseudo inverse of H): (if H invertible, equals inverse, else  $\mathbf{H}^{\dagger} = (\mathbf{H}^H \mathbf{H})^{-1} \mathbf{H}^H$ ); forces offdiagonal terms to zero  $(\widetilde{x}_i = x_i + \widetilde{n}_i; \widetilde{n} = \mathbf{H}^{\dagger}n$ , enhances noise)
    - Minimum Mean Square Error ( $A = H^H(HH^H + \lambda I)^{-1}$ ):  $\lambda \propto 1/SNR$ Balances zero forcing against noise enhancement
- Sphere Decoder: Uses QR decomposition of H
  - Considers possibilities within sphere of transformed received symbol.
    - · If minimum distance symbol is within sphere, optimal, otherwise null is returned

$$\hat{x} = \arg\min |y - Hx|^2$$
 $\frac{Hx+n}{}$ 

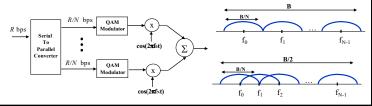


 $\hat{x} = \arg\min |Q^{H} y - Rx|^{2}$  $x:|Q^{\bar{H}}y-Rx|< r$  $Q^H y = Rx + Q^H n$ 

2

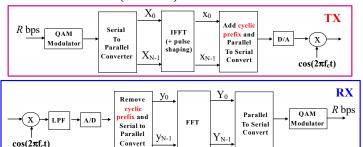
#### **Review Continued**

- ISI Mitigation: Can mitigate ISI with equalization (not covered), multicarrier modulation, or spread spectrum
- Multicarrier Modulation: breaks data into N substreams (B/N<B<sub>c</sub>); Substreams modulated onto separate carriers
  - Substream passband BW is B/N for B total BW
  - B/N<Bc implies flat fading on each subcarrier (no ISI)
  - Can overlap channels for  $f_i$ - $f_{i+1}$ = $T_N$ =N/B (ortho. carriers)



# FFT Implementation of MCM (OFDM)

- Use IFFT at TX to modulate symbols on each subcarrier
- Cyclic prefix makes linear convolution of channel circular, so no interference between FFT blocks in RX processing
- Reverse structure (with FFT) at receiver



5

# **Main Points**

- MCM implemented with IFFTs/FFT (OFDM)
  - Block size depends on data rate relative to delay spread
- OFDM challenges: timing/frequency offset, PAPR
- Subcarrier fading degrades OFDM performance
  - Compensate through precoding (channel inversion), coding across subcarriers, or adaptation
- OFDM naturally combined with MIMO
  - Orthogonal in space/freq; extended matrix representation
  - 4G Cellular and 802.11n/ac/ax all use OFDM+MIMO

# **OFDM** Design Issues

- Timing/frequency offset:
  - Impacts subcarrier orthogonality; self-interference
- Peak-to-Average Power Ratio (PAPR)
  - Adding subcarrier signals creates large signal peaks
  - Solve with clipping or PAPR-optimized coding
- Different fading across subcarriers
  - Mitigate by precoding (fading inversion), adaptive modulation over frequency, and coding across subcarriers
- MIMO-OFDM
  - Apply OFDM across each spatial dimension
  - Can adapt across space, time, and frequency
  - MIMO-OFDM represented by a matrix, extends matrix representation of OFDM alone (considered in HW)

6