EE359 – Lecture 18 Outline

- Announcements
 - My OHs today are 3:45-4:45. Tom has extra OHs by appointment
 - HW due Fri; last HW posted later this week
 - Lecture next Thu 3/12 1:30-3:30 (course review+advanced topics)
 - Final info (coverage, format, extra OHs, etc) given in 3/10 lecture
 - Final exam 3/17, 3:30pm-6:30pm here (Thornton 102)
 - Final projects must be posted 3/14 at midnight (hard deadline).
- Spread Spectrum
 - Direct sequence (DSSS)
 - ISI and Interference Rejection of DSSS
 - RAKE Receiver
- Multiuser Systems
 - Multiple access techniques
 - Random access techniques

1

Review Continued OFDM Design Issues

- Timing/frequency offset:
 - Impacts subcarrier orthogonality; self-interference
- Peak-to-Average Power Ratio (PAPR)
 - Adding subcarrier signals creates large signal peaks
 - Solve with clipping or PAPR-optimized coding
- Different fading across subcarriers
 - Mitigate by precoding (fading inversion), adaptive modulation over frequency, and coding across subcarriers
- MIMO-OFDM
 - Apply OFDM across each spatial dimension
 - Can adapt across space, time, and frequency
 - MIMO-OFDM represented by a matrix, extends matrix representation of OFDM alone (considered in HW)

Review of Last Lecture

MCM, Overlapping Subcarriers and FFT Implementation (OFDM)

- MCM splits high rate data stream into lower rate flat-fading substreams
- Overlapping subcarriers reduces BW by factor of 2
- Modulate symbols with IFFT at TX, Reverse structure (with FFT) in RX
- Cyclic prefix makes linear convolution of channel circular, so no interference between FFT blocks in RX processing

2

Intro. to Spread Spectrum

- Modulation that increases signal bandwidth
 - Spreads modulated signal over wider BW B~1/T_s than needed for transmission (R=log₂(M)/T_s)
 - Mitigates or coherently combines ISI
 - Mitigates narrowband interference/jamming
 - Hides signal below noise (DSSS) or makes it hard to track (FH)
 - Also used as a multiple access technique
- Two types
 - Frequency Hopping:
 - Narrowband signal hopped over wide bandwidth
 - Direction Sequence:
 - Modulated signal multiplied by faster chip sequence

3

Direct Sequence Spread Spectrum

• Bit sequence modulated by chip sequence

- Spreads bandwidth by large factor (G)
- Despread by multiplying by $s_c(t)$ again ($s_c^2(t)=1$)
- Mitigates ISI and narrowband interference

5

RAKE Receiver

- Multibranch receiver
 - Branches synchronized to different MP components

- These components can be coherently combined
 - Use SC, MRC, or EGC

ISI and Interference Rejection

• Narrowband Interference Rejection (1/K)

Multipath Rejection (Autocorrelation ρ(τ))

Can coherently combine all multipath components via a RAKE receiver

6

Multiuser Channels: Uplink and Downlink

7

8

Bandwidth Sharing in Multiple Access

Channels assigned by central controller

- Frequency Division
 - OFDMA
 - Non-orthogonal FD
- Time Division
 - Non-orthogonal TD
- Code Division
 - Code cross-correlation dictates interference
 - Multiuser Detection
- Space Division (SDMA)
- Hybrid Schemes

9

Main Points

- Spread spectrum increases signal bandwidth above that required for information transmission
- Benefits of spread spectrum:
 - ISI/narrowband interference rejection by spreading gain
 - Also used as a multiuser/multiple access technique
- Multiple access: users can share the same spectrum via time/frequency/code/space division
- Random access more efficient than multiple access for short/infrequent data transmission

Random vs. Multiple Access

- · In multiple access, channels are assigned by a centralized controller
 - Requires a central controller and control channel
 - Inefficient for short and/or infrequent data transmissions
- · In random access, users access channel randomly when they have data to send
 - A simple random access scheme will be explored in homework
- ALOHA Schemes (not on exams/HW)
 - Data is packetized.
 - Packets occupy a given time interval

- Pure ALOH.
- send packet whenever data is available
- a collision occurs for any partial overlap of packets (nonorthogonal slots)
- Packets received in error are retransmitted after random delay interval (avoids subsequent collisions).
- Slotted ALOHA
 - same as ALOHA but with packet slotting
 - packets sent during predefined timeslots
 - A collision occurs when packets overlap,
 - but there is no partial overlap of packets
 - Packets received in error are retransmitted after random delay interval.

10