EE359 – Lecture 3 Outline

- Announcements
 - HW posted, due Fri 4pm
 - Discussion section starts Wed, 4-5pm, 364 Packard (tentative)
 - TA OHs start this week
 - Thanks for all the book typos entered into the website!
- Log Normal Shadowing
- Combined Path Loss and Shadowing
- Outage Probability
- Model Parameters from Measurements
- Statistical Multipath Model

1

Shadowing

- Models attenuation from obstructions
- Random due to random # and type of obstructions
- Typically follows a log-normal distribution
 - dB value of power is normally distributed
 - μ =0 (mean captured in path loss), 4< σ <12 (empirical)
 - CLT used to explain this model
 - Decorrelates over decorrelation distance X_c

Lecture 2 Review

- Propagation Characteristics
 - Path loss, shadowing, multipath
- Overview of Path Loss Models
- Free Space Path Loss
 - Power falloff proportional to λ and to d-2
- Two Ray Model
 - Power falloff independent of λ; proportional to d-4
- Simplified Model: $P_r = P_t K[d_0/d]^{\gamma}$, $2 \le \gamma \le 8$.
 - Captures main characteristics of path loss
- mmWave Path Loss Models:
 - Large attenuation at 60/120/180GHz and from rain
- Empirical Models (not on HW or exams)

2

Combined Path Loss and Shadowing

• Linear Model: ψlognormal

$$\frac{P_r}{P_t} = K \left(\frac{d_0}{d}\right)^{\gamma} \psi$$

• dB Model

$$\frac{P_{r}}{P_{t}}(dB) = 10\log_{10} K - 10\gamma \log_{10} \left(\frac{d}{d_{0}}\right) - \psi_{dB}, \ \psi_{dB} \sim N(\mu_{\psi}, \sigma_{\psi}^{2})$$

 $\mu_{\psi} = 0$ when average shadowing incorporated into K and γ , else $\mu_{\psi} > 0$

3

Outage Probability

- Path loss only: circular "cells"; Path loss+shadowing: amoeba-shaped cells
- Outage probability: probability received power falls below given minimum:

$$P_{out} = p(P_r < P_{min})$$

• For log-normal shadowing model

$$P_{out} = 1 - Q \left(\frac{P_{min} - \left(P_t + 10log_{10}K - 10\gamma log_{10}(d/d_0) \right)}{\sigma_{\psi_{dB}}} \right)$$

5

Statistical Multipath Model

- Random # of multipath components, each with
 - Random amplitude
 - Random phase
 - Random Doppler shift
 - Random delay
- Random components change with time
- Leads to time-varying channel impulse response

Model Parameters from Empirical Measurements

• Fit model to data

- Path loss (K,γ) , d_0 known:
 - "Best fit" line through dB data
 - K obtained from measurements at d_0 .
 - Or can solve for (K,γ) simultaneously (least squares fit)
 - Exponent is MMSE estimate based on data
 - Captures mean due to shadowing
- Shadowing variance
 - Variance of data relative to path loss model (straight line) with MMSE estimate for γ

6

Main Points

- Random attenuation due to shadowing modeled as log-normal (empirical parameters)
- Shadowing decorrelates over decorrelation distance
- Combined path loss and shadowing leads to outage and non-circular coverage areas for WiFi/cellular
- Path loss and shadowing parameters obtained from empirical measurements through a least-squares fit
 - Matches environment in which measurements are taken.
 - Can do a 1D fit with K fixed or a 2D fit over K and γ.
- Statistical multipath model leads to a time-varying channel impulse response

7

8