EE359 - Lecture 6 Outline

- Announcements:
 - HW due tomorrow 4pm
- Review of Last Lecture
- Wideband Multipath Channels
- Scattering Function
- Multipath Intensity Profile
- Doppler Power Spectrum

1

Review Continued:

Signal Envelope Distribution

• CLT approx. leads to Rayleigh distributio (power is exponential*)

To cover today

• When LOS component present, Rician distribution is used

$$p_Z(z) = \frac{2z(K+1)}{P_r} \exp\left[-K - \frac{(K+1)z^2}{P_r}\right] I_0\left(2\sqrt{\frac{K(K+1)z}{P_r}}\right]$$

 Measurements support Nakagami distribution in some environments

- Similar to Ricean, but models "worse than Rayleigh"
- Lends itself better to closed form BER expressions

*Correct in lecture 5 handout; Reader corrections on next slide

Review of Last Lecture

• For $\phi_n \sim U[0,2\pi]$, $r_I(t)$, $r_O(t)$ zero mean, WSS, with

$$A_{r_{1}}(\tau) = P_{r}E_{\theta_{n}}[\cos 2\pi f_{D_{n}}\tau] = A_{r_{0}}(\tau), \ f_{D_{n}} = v\cos\theta_{n}/\lambda$$

$$A_{r_{l},r_{0}}(\tau) = P_{r}E_{\theta_{n}}[\sin 2\pi f_{D_{n}}\tau] = -A_{r_{l},r_{0}}(\tau)$$

- Uniform AoAs in Narrowband Model
 - In-phase/quad comps have zero cross correlation and

$$A_{r_0}(\tau) = A_{r_0}(\tau) = P_r J_0(2\pi f_D \tau)$$

 $f_D = v/\lambda$

Decorrelates over roughly half a wavelength

- PSD maximum at the maximum Doppler frequency
 - PSD used to generate simulation values

 $S_r(f)$

2

Reader correction: Rayleigh Distribution (Section 3.2.2, pp. 87-88, correct in 1st Ed.)

• X and Y zero-mean Gaussian, variance σ^2 , define Z:

$$Z = \sqrt{X^2 + Y^2}$$

• Signal envelope z(t) = |r(t)|; r(t) has power $P_r = 2\sigma^2$

$$z(t) = |r(t)| = \sqrt{r_I^2(t) + r_Q^2(t)}$$

• Envelope: Z, z(t), and |r(t)| are Rayleigh distributed

$$p_Z(z) = \frac{2z}{P_r} \exp\left[-\frac{z^2}{P_r}\right] = \frac{z}{\sigma^2} \exp\left[-\frac{z^2}{2\sigma^2}\right]$$

• Power: \mathbb{Z}^2 , $\mathbb{Z}^2(t)$, and $|\mathbf{r}(t)|^2$ are exponentially distributed

$$p_{Z^2}(x) = \frac{1}{P_r} e^{-x/P_r} = \frac{1}{2\sigma^2} e^{-x/2\sigma^2}$$

3

Wideband Channels

- Individual multipath components resolvable
- True when time difference between components exceeds signal bandwidth
 - High-speed wireless systems are wideband for most environments

5

Multipath Intensity Profile

• Defined as $A_c(\tau, \Delta t = 0) = A_c(\tau)$

- \bullet Determines average $(\mu_{T_m}$) and rms (σ_{T_m}) delay spread
- Approximates maximum delay of significant multipath
- Coherence bandwidth $B_c = 1/\sigma_{T_m}$
 - Maximum frequency over which $A_c(\Delta f) = F[A_c(\tau)] > 0$
 - $A_c(\Delta f)=0$ implies signals separated in freq. by Δf will be uncorrelated after going through channel: freq. distortion

Wideband signal distorted in time and in frequency **Scattering Function**

- Typically characterize $c(\tau,t)$ by its statistics, since it is a random process
- Underlying process WSS and Gaussian, so only characterize mean (0) and correlation
- Autocorrelation is $A_c(\tau_1, \tau_2, \Delta t) = A_c(\tau, \Delta t)$
 - Correlation for single mp delay/time difference
- Statistical scattering function:
 - Average power for given mp delay and doppler

$$s(\tau,\rho) = \mathcal{F}_{\Delta t}[A_c(\tau,\Delta t)]$$

Doppler Power Spectrum

Scattering Function: $s(\tau, \rho) = \mathcal{F}_{\Delta t}[A_c(\tau, \Delta t)]$

• Doppler Power Spectrum: $S_c(\rho) = \mathcal{F}_{\Delta t} [A_c(\Delta f = 0, \Delta t) \triangleq Ac(\Delta t)]$

$$A_c(\Delta f, \Delta t) = \mathcal{F}_{\tau}[A_c(\tau, \Delta t)]$$

- Power of multipath at given Doppler
- Doppler spread B_d : Max. doppler for which $S_c(\rho) = >0$.
- Coherence time $T_c=1/B_d$: Max time over which $A_c(\Delta t)>0$
 - A_c(Δt)=0⇒ signals separated in time by Δt uncorrelated after passing through channel
- Why do we look at Doppler w.r.t. $A_c(\Delta f=0,\Delta t)$?
 - Captures Doppler associated with a narrowband signal
 - Autocorrelation over a narrow range of frequencies
 - Fully captures time-variations, multipath angles of arrival

7

8

Main Points

- Wideband channels have resolvable multipath
 - Statistically characterize c(τ,t) for WSSUS model
 - Scattering function characterizes rms delay and Doppler spread. Key parameters for system design.
- Delay spread defines maximum delay of significant multipath components. Inverse is coherence BW
 - Signal distortion in time/freq. when delay spread exceeds inverse signal BW (signal BW exceeds coherence BW)
- Doppler spread defines maximum nonzero doppler, its inverse is coherence time
 - Channel decorrelates over channel coherence time