EE363 homework 1

1. LQR for a triple accumulator. We consider the system \(x_{t+1} = Ax_t + Bu_t, \ y_t = Cx_t, \) with

\[
A = \begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{bmatrix}, \quad B = \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \quad C = \begin{bmatrix}
0 & 0 & 1
\end{bmatrix}.
\]

This system has transfer function \(H(z) = (z - 1)^{-3}, \) and is called a triple accumulator, since it consists of a cascade of three accumulators. (An accumulator is the discrete-time analog of an integrator: its output is the running sum of its input.) We’ll use the LQR cost function

\[
J = \sum_{t=0}^{N-1} u_t^2 + \sum_{t=0}^{N} y_t^2,
\]

with \(N = 50. \)

(a) Find \(P_t \) (numerically), and verify that the Riccati recursion converges to a steady-state value in fewer than about 10 steps. Find the optimal time-varying state feedback gain \(K_t, \) and plot its components \((K_t)_{11}, (K_t)_{12}, \) and \((K_t)_{13}, \) versus \(t. \)

(b) Find the initial condition \(x_0, \) with norm not exceeding one, that maximizes the optimal value of \(J. \) Plot the optimal \(u \) and resulting \(x \) for this initial condition.

2. Linear quadratic state tracking. We consider the system \(x_{t+1} = Ax_t + Bu_t. \) In the conventional LQR problem the goal is to make both the state and the input small. In this problem we study a generalization in which we want the state to follow a desired (possibly nonzero) trajectory as closely as possible. To do this we penalize the deviations of the state from the desired trajectory, i.e., \(x_t - x^d_t, \) using the following cost function:

\[
J = \sum_{\tau=0}^{N} (x_\tau - x^d_\tau)^T Q (x_\tau - x^d_\tau) + \sum_{\tau=0}^{N-1} u^T_\tau Ru_\tau,
\]

where we assume \(Q = Q^T \geq 0 \) and \(R = R^T > 0. \) (The desired trajectory \(x^d_\tau \) is given.) Compared with the standard LQR objective, we have an extra linear term (in \(x \)) and a constant term.

In this problem you will use dynamic programming to show that the cost-to-go function \(V_t(z) \) for this problem has the form

\[
z^T P_t z + 2q^T_t z + r_t,
\]

with \(P_t = P^T_t \geq 0. \) (i.e., it has quadratic, linear, and constant terms.)

(a) Show that \(V_N(z) \) has the given form.
(b) Assuming $V_{t+1}(z)$ has the given form, show that the optimal input at time t can be written as

$$u_t^* = K_t x_t + g_t,$$

where

$$K_t = -(R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A, \quad g_t = -(R + B^T P_{t+1} B)^{-1} B^T q_{t+1}.$$

In other words, u_t^* is an affine (linear plus constant) function of the state x_t.

(c) Use backward induction to show that $V_0(z), \ldots, V_N(z)$ all have the given form. Verify that

$$P_t = Q + A^T P_{t+1} A - A^T P_{t+1} B (R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A,$$

$$q_t = (A + BK_t)^T q_{t+1} - Q x_t^d,$$

$$r_t = r_{t+1} + x_t^d Q x_t^d + q_{t+1}^T B g_t,$$

for $t = 0, \ldots, N - 1$.

3. The Schur complement. In this problem you will show that if we minimize a positive semidefinite quadratic form over some of its variables, the result is a positive semidefinite quadratic form in the remaining variables. Specifically, let

$$J(u, z) = \begin{bmatrix} u \\ z \end{bmatrix}^T \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{12}^T & Q_{22} \end{bmatrix} \begin{bmatrix} u \\ z \end{bmatrix}$$

be a positive semidefinite quadratic form in u and z. You may assume $Q_{11} > 0$ and Q_{11}, Q_{22} are symmetric. Define $V(z) = \min_u J(u, z)$. Show that $V(z) = z^T P z$, where P is symmetric positive semidefinite (find P explicitly).

The matrix P is called the Schur complement of the matrix Q_{11} in the big matrix above. It comes up in many contexts.

4. A useful determinant identity. Suppose $X \in \mathbb{R}^{n \times m}$ and $Y \in \mathbb{R}^{m \times n}$.

(a) Show that $\det(I + XY) = \det(I + YX)$. Hint: Find a block lower triangular matrix L for which

$$\begin{bmatrix} I & X \\ -Y & I \end{bmatrix} = L \begin{bmatrix} I & X \\ 0 & I \end{bmatrix},$$

and use this factorization to evaluate the determinant of this matrix. Then find a block upper triangular matrix U for which

$$\begin{bmatrix} I & X \\ -Y & I \end{bmatrix} = U \begin{bmatrix} I & 0 \\ -Y & I \end{bmatrix},$$

and repeat.
(b) Show that the nonzero eigenvalues of \(XY\) and \(YX\) are exactly the same.

5. When does a finite-horizon LQR problem have a time-invariant optimal state feedback gain? Consider a discrete-time LQR problem with horizon \(t = N\), with optimal input \(u(t) = K_t x(t)\). Is there a choice of \(Q_f\) (symmetric and positive semidefinite, of course) for which \(K_t\) is constant, i.e., \(K_0 = \cdots = K_{N-1}\)?