EE363 homework 7

1. **Gain margin for a linear quadratic regulator.** Let K be the optimal state feedback gain for the LQR problem with system $\dot{x} = Ax + Bu$, state cost matrix $Q \geq 0$, and input cost matrix $R > 0$. You can assume that (A, B) is controllable and (Q, A) is observable.

We consider the system

$$\dot{x} = Ax + Bu, \quad u = \alpha Kx,$$

where $\alpha > 0$. If $\alpha = 1$, this gives the LQR optimal input, but for $\alpha \neq 1$ this input is obviously not LQR optimal, and indeed the closed-loop system $\dot{x} = (A + \alpha BK)x$ can even be unstable.

Show that for $\alpha > 1/2$, the closed-loop system is stable. In classical control theory, the ability of a system to remain stable when the input is scaled by any factor in the interval $(1/2, \infty)$ is described as a negative gain margin of 6dB, and an infinite positive gain margin.

Hint. Use the obvious quadratic Lyapunov function.

2. **Gradient systems.** Suppose ϕ is a scalar valued function on \mathbb{R}^n. (You can assume it is smooth, or has any other technical property you need.) We can define several dynamical systems using the gradient of ϕ. These systems are sometimes called gradient systems, and in this context, ϕ is sometimes called the potential function.

 (a) A second order gradient system has the form $\ddot{x} = -\nabla \phi(x)$. Show that $V(x(t)) = \phi(x(t)) + (1/2)\|\dot{x}(t)\|^2_2$ is a conserved quantity.

 (b) A first order gradient system has the form $\dot{x} = -\nabla \phi(x)$. Show that ϕ is a dissipated quantity.

 (c) Suppose ϕ has bounded sublevel sets. Show that for every solution of $\dot{x} = -\nabla \phi(x)$, we have $\nabla \phi(x) \to 0$ as $t \to \infty$.

 Hint. Show that $\int_0^\infty \|\nabla \phi(x(t))\|^2 dt < \infty$.

3. **A bound on peaking factor via Lyapunov theory.** Consider the system $\dot{x} = f(x)$, where $f : \mathbb{R}^n \to \mathbb{R}^n$, and $f(0) = 0$ (i.e., 0 is an equilibrium point).

We define the peaking factor p of the system as

$$p = \sup_{t \geq 0, x(0) \neq 0} \frac{\|x(t)\|}{\|x(0)\|},$$

where the supremum is taken over all trajectories of the system with $x(0) \neq 0$. We can have $p = \infty$, which would occur, for example, if there is an unbounded trajectory
of the system. We always have \(p \geq 1; \ p = 1 \) only if all trajectories never increase in norm. The peaking factor gives a bound on how far any trajectory can wander away from the origin, relative to how far it was when it started.

In this problem you will show how to bound the peaking factor of a system using Lyapunov methods.

Suppose the quadratic Lyapunov function \(V(z) = z^T P z \), \(P = P^T > 0 \), satisfies \(\dot{V}(z) = 2z^T P f(z) \leq 0 \) for all \(z \). (In other words, the Lyapunov function \(V \) proves that all trajectories are bounded.) Show that \(p \leq \sqrt{\kappa} \), where \(\kappa = \lambda_{\text{max}}(P)/\lambda_{\text{min}}(P) \) is the condition number of \(P \).

Two interpretations/ramifications of this result:

- By finding a quadratic Lyapunov function that proves the trajectories are bounded, we can bound the peaking factor of the system.
- If a system has a large peaking factor, then any quadratic Lyapunov function that proves boundedness of the trajectories must have large condition number.

4. **Digital filter with saturation.** The dynamics of an undriven digital filter which exhibits saturation is \(x(k+1) = \text{sat}(Ax(k)) \), where \(A \in \mathbb{R}^{n \times n} \) is stable, and \(\text{sat} : \mathbb{R}^n \to \mathbb{R}^n \) is defined by \(\text{sat}(x) = (\text{sat}(x_1), \ldots, \text{sat}(x_n)) \), and the (unit) saturation function is defined by

\[
\text{sat}(z) = \begin{cases}
 z & |z| < 1 \\
 1 & z \geq 1 \\
 -1 & z \leq -1.
\end{cases}
\]

Without saturation, the state would converge to zero, but with saturation, it need not. When a trajectory of the system fails to converge to zero, it is called saturation induced instability. We seek conditions under which the system with saturation is globally asymptotically stable, i.e., saturation induced instability cannot occur.

Show that \(x(k) \to 0 \) if there is a nonsingular diagonal \(D \) such that \(\|DAD^{-1}\| < 1 \). (We will see later how to compute such a \(D \), or determine that none exists, using linear matrix inequalities.)

Hint: Use the Lyapunov function \(V(z) = \|Dz\| \).

5. **Boundaries of sublevel sets and LaSalle’s theorem.** The set \(\{ z \in \mathbb{R}^n \mid \dot{V}(z) = 0 \} \) arising in LaSalle’s theorem is usually a ‘thin’ hypersurface, but it need not be. Carefully prove global asymptotic stability of

\[
\dot{x}_1 = x_2, \quad \dot{x}_2 = -x_1 - \max \{0, x_1\} \max \{0, x_2\}.
\]

(You might want to sketch out the vector field to understand the dynamics.)

6. **LQR control with quantized gain matrix.** Consider the ODE

\[
\ddot{y}(t) + 0.95\dot{y}(t) + 0.75y(t) + 0.85y(t) = u(t),
\]
with linear state feedback
\[u(t) = k_1 y(t) + k_2 \dot{y}(t) + k_3 \ddot{y}(t). \]

(a) Find \(k_1^{\text{opt}}, k_2^{\text{opt}}, \) and \(k_3^{\text{opt}} \) that minimize
\[J = \int_0^\infty (y(t)^2 + u(t)^2) \, dt. \]
(Of course, you must explain your method.)

What is \(J^{\text{opt}} \), the minimum value of \(J \), for initial condition \(y(0) = \dot{y}(0) = \ddot{y}(0) = 1 \)?

(b) Let \(k_i^{\text{quant}} = \text{round}(k_i^{\text{opt}}) \) (where \(\text{round}(a) \) denotes the nearest integer to \(a \)), and let \(J^{\text{quant}} \) be the value of \(J \) when \(k = k_i^{\text{quant}} \). What is the value of \(J^{\text{quant}} \) for initial condition \(y(0) = \dot{y}(0) = \ddot{y}(0) = 1 \)?

For what (nonzero) initial condition is the ratio \(J^{\text{quant}} / J^{\text{opt}} \) maximum? What is this maximum value?

7. Schur complements and matrix inequalities. Consider a matrix \(X = X^T \in \mathbb{R}^{n\times n} \) partitioned as
\[X = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}, \]
where \(A \in \mathbb{R}^{k\times k} \). If \(\det A \neq 0 \), the matrix \(S = C - B^T A^{-1} B \) is called the Schur complement of \(A \) in \(X \). Schur complements arise in many situations and appear in many important formulas and theorems. For example, we have \(\det X = \det A \det S \). (You don’t have to prove this.)

The Schur complement arises in several characterizations of positive definiteness or semidefiniteness of a block matrix. As examples we have the following three theorems:

- \(X \succ 0 \) if and only if \(A \succ 0 \) and \(S \succ 0 \).
- If \(A \succ 0 \), then \(X \succeq 0 \) if and only if \(S \succeq 0 \).
- \(X \succeq 0 \) if and only if \(A \succeq 0, B^T (I - AA^\dagger) = 0 \) and \(C - B^T A^\dagger B \succeq 0 \), where \(A^\dagger \) is the pseudo-inverse of \(A \). \((C - B^T A^\dagger B \) serves as a generalization of the Schur complement in the case where \(A \) is positive semidefinite but singular.)

Prove one of these theorems. (You can choose which one.)