Lecture 1

Linear quadratic regulator: Discrete-time finite horizon

- LQR cost function
- multi-objective interpretation
- LQR via least-squares
- dynamic programming solution
- steady-state LQR control
- extensions: time-varying systems, tracking problems
LQR problem: background

discrete-time system $x_{t+1} = Ax_t + Bu_t, x_0 = x^{\text{init}}$

problem: choose u_0, u_1, \ldots so that

- x_0, x_1, \ldots is ‘small’, *i.e.*, we get good regulation or control
- u_0, u_1, \ldots is ‘small’, *i.e.*, using small input effort or actuator authority

- we’ll define ‘small’ soon

- these are usually competing objectives, *e.g.*, a large u can drive x to zero fast

linear quadratic regulator (LQR) theory addresses this question
we define *quadratic cost function*

\[
J(U) = \sum_{\tau=0}^{N-1} (x_{\tau}^T Q x_{\tau} + u_{\tau}^T R u_{\tau}) + x_N^T Q_f x_N
\]

where \(U = (u_0, \ldots, u_{N-1})\) and

\[
Q = Q^T \geq 0, \quad Q_f = Q_f^T \geq 0, \quad R = R^T > 0
\]

are given *state cost, final state cost, and input cost* matrices
• N is called *time horizon* (we’ll consider $N = \infty$ later)

• first term measures *state deviation*

• second term measures *input size* or *actuator authority*

• last term measures *final state deviation*

• Q, R set relative weights of state deviation and input usage

• $R > 0$ means any (nonzero) input adds to cost J

LQR problem: find $u_{0}^{\text{lqr}}, \ldots, u_{N-1}^{\text{lqr}}$ that minimizes $J(U)$

Linear quadratic regulator: Discrete-time finite horizon
Comparison to least-norm input

c.f. least-norm input that steers x to $x_N = 0$:

- no cost attached to x_0, \ldots, x_{N-1}
- x_N must be exactly zero

we can approximate the least-norm input by taking

$$R = I, \quad Q = 0, \quad Q_f \text{ large, e.g., } Q_f = 10^8 I$$
Multi-objective interpretation

common form for Q and R:

\[R = \rho I, \quad Q = Q_f = C^T C \]

where $C \in \mathbb{R}^{p \times n}$ and $\rho \in \mathbb{R}$, $\rho > 0$

cost is then

\[J(U) = \sum_{\tau=0}^{N} \|y_{\tau}\|^2 + \rho \sum_{\tau=0}^{N-1} \|u_{\tau}\|^2 \]

where $y = Cx$

here $\sqrt{\rho}$ gives relative weighting of output norm and input norm
Input and output objectives

fix $x_0 = x^{\text{init}}$ and horizon N; for any input $U = (u_0, \ldots, u_{N-1})$ define

- input cost $J_{\text{in}}(U) = \sum_{\tau=0}^{N-1} \|u_\tau\|^2$

- output cost $J_{\text{out}}(U) = \sum_{\tau=0}^{N} \|y_\tau\|^2$

these are (competing) objectives; we want both small

LQR quadratic cost is $J_{\text{out}} + \rho J_{\text{in}}$
plot \((J_{\text{in}}, J_{\text{out}})\) for all possible \(U\):

- shaded area shows \((J_{\text{in}}, J_{\text{out}})\) achieved by some \(U\)
- clear area shows \((J_{\text{in}}, J_{\text{out}})\) not achieved by any \(U\)
three sample inputs U_1, U_2, and U_3 are shown

- U_3 is worse than U_2 on both counts (J_{in} and J_{out})
- U_1 is better than U_2 in J_{in}, but worse in J_{out}

interpretation of LQR quadratic cost:

$$J = J_{out} + \rho J_{in} = \text{constant}$$

corresponds to a line with slope $-\rho$ on (J_{in}, J_{out}) plot
\[J = J_{\text{out}} + \rho J_{\text{in}} = \text{constant} \]

- LQR optimal input is at boundary of shaded region, just touching line of smallest possible \(J \)

- \(u_2 \) is LQR optimal for \(\rho \) shown

- by varying \(\rho \) from 0 to \(+\infty\), can sweep out optimal tradeoff curve
LQR via least-squares

LQR can be formulated (and solved) as a least-squares problem

\[X = (x_0, \ldots, x_N) \text{ is a } \text{linear function} \text{ of } x_0 \text{ and } U = (u_0, \ldots, u_{N-1}): \]

\[
\begin{bmatrix}
 x_0 \\
 \vdots \\
 x_N
\end{bmatrix}
= \begin{bmatrix}
 0 & \cdots \\
 B & 0 & \cdots \\
 AB & B & 0 & \cdots \\
 \vdots & \vdots & \ddots & \ddots & \ddots
\end{bmatrix}
\begin{bmatrix}
 u_0 \\
 \vdots \\
 u_{N-1}
\end{bmatrix}
+ \begin{bmatrix}
 I \\
 A \\
 \vdots \\
 A^{N-1}
\end{bmatrix} x_0
\]

express as \(X = GU + Hx_0 \), where \(G \in \mathbb{R}^{Nn \timesNm} \), \(H \in \mathbb{R}^{Nn \times n} \)
express LQR cost as

\[
J(U) = \left\| \text{diag}(Q^{1/2}, \ldots, Q^{1/2}, Q_f^{1/2})(GU + Hx_0) \right\|^2 + \left\| \text{diag}(R^{1/2}, \ldots, R^{1/2})U \right\|^2
\]

this is just a (big) least-squares problem

this solution method requires forming and solving a least-squares problem with size \(N(n + m) \times Nm \)

using a naive method \((e.g., \text{QR factorization}) \), cost is \(O(N^3nm^2) \)
Dynamic programming solution

- gives an efficient, recursive method to solve LQR least-squares problem; cost is $O(Nn^3)$

- (but in fact, a less naive approach to solve the LQR least-squares problem will have the same complexity)

- useful and important idea on its own

- same ideas can be used for many other problems
Value function

for $t = 0, \ldots, N$ define the value function $V_t : \mathbb{R}^n \rightarrow \mathbb{R}$ by

$$V_t(z) = \min_{u_t, \ldots, u_{N-1}} \sum_{\tau = t}^{N-1} \left(x_\tau^T Q x_\tau + u_\tau^T R u_\tau \right) + x_N^T Q_f x_N$$

subject to $x_t = z$, $x_{\tau+1} = A x_\tau + B u_\tau$, $\tau = t, \ldots, T$

- $V_t(z)$ gives the minimum LQR cost-to-go, starting from state z at time t
- $V_0(x_0)$ is min LQR cost (from state x_0 at time 0)
we will find that

- V_t is quadratic, i.e., $V_t(z) = z^T P_t z$, where $P_t = P_t^T \geq 0$

- P_t can be found recursively, working backward from $t = N$

- the LQR optimal u is easily expressed in terms of P_t

cost-to-go with no time left is just final state cost:

$$V_N(z) = z^T Q_f z$$

thus we have $P_N = Q_f$
Dynamic programming principle

• now suppose we know $V_{t+1}(z)$

• what is the optimal choice for u_t?

• choice of u_t affects

 – current cost incurred (through $u_t^T R u_t$)

 – where we land, x_{t+1} (hence, the min-cost-to-go from x_{t+1})

• dynamic programming (DP) principle:

 $$V_t(z) = \min_w \left(z^T Q z + w^T R w + V_{t+1}(A z + B w) \right)$$

 – $z^T Q z + w^T R w$ is cost incurred at time t if $u_t = w$

 – $V_{t+1}(A z + B w)$ is min cost-to-go from where you land at $t + 1$
• follows from fact that we can minimize in any order:

\[
\min_{w_1,\ldots,w_k} f(w_1,\ldots,w_k) = \min_{w_1} \left(\min_{w_2,\ldots,w_k} f(w_1,\ldots,w_k) \right) \quad \text{(a fact of } w_1)\]

in words:
min cost-to-go from where you are = min over
(current cost incurred + min cost-to-go from where you land)
Example: path optimization

- edges show possible flights; each has some cost
- want to find min cost route or path from SF to NY
dynamic programming (DP):

- $V(i)$ is min cost from airport i to NY, over all possible paths

- to find min cost from city i to NY: minimize sum of flight cost plus min cost to NY from where you land, over all flights out of city i (gives optimal flight out of city i on way to NY)

- if we can find $V(i)$ for each i, we can find min cost path from any city to NY

- DP principle: $V(i) = \min_j (c_{ji} + V(j))$, where c_{ji} is cost of flight from i to j, and minimum is over all possible flights out of i
HJ equation for LQR

\[V_t(z) = z^T Q z + \min_w \left(w^T R w + V_{t+1}(A z + B w) \right) \]

• called DP, Bellman, or Hamilton-Jacobi equation

• gives \(V_t \) recursively, in terms of \(V_{t+1} \)

• any minimizing \(w \) gives optimal \(u_t \):

\[u_t^{\text{lqr}} = \arg\min_w \left(w^T R w + V_{t+1}(A z + B w) \right) \]
• let’s assume that $V_{t+1}(z) = z^T P_{t+1} z$, with $P_{t+1} = P_{t+1}^T \geq 0$

• we’ll show that V_t has the same form

• by DP,

$$V_t(z) = z^T Qz + \min_w \left(w^T R w + (Az + Bw)^T P_{t+1} (Az + Bw) \right)$$

• can solve by setting derivative w.r.t. w to zero:

$$2w^T R + 2(Az + Bw)^T P_{t+1} B = 0$$

• hence optimal input is

$$w^* = -(R + B^T P_{t+1} B)^{-1} B^T P_{t+1} Az$$
• and so (after some ugly algebra)

\[
V_t(z) = z^T Q z + w^*^T R w^* + (A z + B w^*)^T P_{t+1} (A z + B w^*) \\
= z^T (Q + A^T P_{t+1} A - A^T P_{t+1} B (R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A) z \\
= z^T P_t z
\]

where

\[
P_t = Q + A^T P_{t+1} A - A^T P_{t+1} B (R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A
\]

• easy to show \(P_t = P_t^T \geq 0 \)
Summary of LQR solution via DP

1. set $P_N := Q_f$

2. for $t = N, \ldots, 1$,

$$P_{t-1} := Q + A^T P_t A - A^T P_t B (R + B^T P_t B)^{-1} B^T P_t A$$

3. for $t = 0, \ldots, N - 1$, define $K_t := -(R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A$

4. for $t = 0, \ldots, N - 1$, optimal u is given by $u_t^{lqr} = K_t x_t$

- optimal u is a linear function of the state (called linear state feedback)
- recursion for min cost-to-go runs backward in time
LQR example

2-state, single-input, single-output system

\[x_{t+1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x_t + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_t, \quad y_t = \begin{bmatrix} 1 & 0 \end{bmatrix} x_t \]

with initial state \(x_0 = (1, 0) \), horizon \(N = 20 \), and weight matrices

\[Q = Q_f = C^T C, \quad R = \rho I \]
optimal trade-off curve of J_{in} vs. J_{out}:

circles show LQR solutions with $\rho = 0.3, \rho = 10$
u & y for $\rho = 0.3$, $\rho = 10$:

![Graph showing u_t and y_t over time t.]
optimal input has form $u_t = K_t x_t$, where $K_t \in \mathbb{R}^{1 \times 2}$

state feedback gains vs. t for various values of Q_f (note convergence):

![Graph showing state feedback gains vs. time for different values of Q_f.]
Steady-state regulator

usually P_t rapidly converges as t decreases below N

limit or steady-state value P_{ss} satisfies

$$
P_{ss} = Q + A^T P_{ss} A - A^T P_{ss} B (R + B^T P_{ss} B)^{-1} B^T P_{ss} A
$$

which is called the (DT) algebraic Riccati equation (ARE)

• P_{ss} can be found by iterating the Riccati recursion, or by direct methods

• for t not close to horizon N, LQR optimal input is approximately a linear, constant state feedback

$$
u_t = K_{ss} x_t, \quad K_{ss} = -(R + B^T P_{ss} B)^{-1} B^T P_{ss} A
$$

(very widely used in practice; more on this later)
Time-varying systems

LQR is readily extended to handle time-varying systems

\[x_{t+1} = A_t x_t + B_t u_t \]

and time-varying cost matrices

\[J = \sum_{\tau=0}^{N-1} \left(x_\tau^T Q_\tau x_\tau + u_\tau^T R_\tau u_\tau \right) + x_N^T Q_f x_N \]

(so \(Q_f \) is really just \(Q_N \))

DP solution is readily extended, but (of course) there need not be a steady-state solution
Tracking problems

we consider LQR cost with state and input offsets:

\[J = \sum_{\tau=0}^{N-1} (x_\tau - \bar{x}_\tau)^T Q (x_\tau - \bar{x}_\tau) \]

\[+ \sum_{\tau=0}^{N-1} (u_\tau - \bar{u}_\tau)^T R (u_\tau - \bar{u}_\tau) \]

(we drop the final state term for simplicity)

here, \(\bar{x}_\tau \) and \(\bar{u}_\tau \) are given desired state and input trajectories

DP solution is readily extended, even to time-varying tracking problems
Gauss-Newton LQR

nonlinear dynamical system: \(x_{t+1} = f(x_t, u_t), \ x_0 = x^{\text{init}} \)

objective is

\[
J(U) = \sum_{\tau=0}^{N-1} (x_{\tau}^T Q x_{\tau} + u_{\tau}^T R u_{\tau}) + x_N^T Q_f x_N
\]

where \(Q = Q^T \geq 0, \ Q_f = Q_f^T \geq 0, \ R = R^T > 0 \)

start with a guess for \(U \), and alternate between:

- linearize around current trajectory
- solve associated LQR (tracking) problem

sometimes converges, sometimes to the globally optimal \(U \)
let u denote current iterate or guess

simulate system to find x, using $x_{t+1} = f(x_t, u_t)$

linearize around this trajectory: $\delta x_{t+1} = A_t \delta x_t + B_t \delta u_t$

$$A_t = D_x f(x_t, u_t) \quad B_t = D_u f(x_t, u_t)$$

solve time-varying LQR tracking problem with cost

$$J = \sum_{\tau=0}^{N-1} (x_\tau + \delta x_\tau)^T Q (x_\tau + \delta x_\tau) + \sum_{\tau=0}^{N-1} (u_\tau + \delta u_\tau)^T R (u_\tau + \delta u_\tau)$$

for next iteration, set $u_t := u_t + \delta u_t$