Lecture 12
Basic Lyapunov theory

- stability
- positive definite functions
- global Lyapunov stability theorems
- Lasalle’s theorem
- converse Lyapunov theorems
- finding Lyapunov functions
Some stability definitions

we consider nonlinear time-invariant system \(\dot{x} = f(x) \), where \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \)

a point \(x_e \in \mathbb{R}^n \) is an \textit{equilibrium point} of the system if \(f(x_e) = 0 \)

\(x_e \) is an equilibrium point \iff \(x(t) = x_e \) is a trajectory

suppose \(x_e \) is an equilibrium point

- system is \textit{globally asymptotically stable} (G.A.S.) if for every trajectory \(x(t) \), we have \(x(t) \rightarrow x_e \) as \(t \rightarrow \infty \)

 (implies \(x_e \) is the unique equilibrium point)

- system is \textit{locally asymptotically stable} (L.A.S.) near or at \(x_e \) if there is an \(R > 0 \) s.t. \(\|x(0) - x_e\| \leq R \implies x(t) \rightarrow x_e \) as \(t \rightarrow \infty \)
• often we change coordinates so that \(x_e = 0 \) (\(i.e. \), we use \(\tilde{x} = x - x_e \))

• a linear system \(\dot{x} = Ax \) is G.A.S. (with \(x_e = 0 \)) ⇔ \(\Re \lambda_i(A) < 0 \), \(i = 1, \ldots, n \)

• a linear system \(\dot{x} = Ax \) is L.A.S. (near \(x_e = 0 \)) ⇔ \(\Re \lambda_i(A) < 0 \), \(i = 1, \ldots, n \)
 (so for linear systems, L.A.S. ⇔ G.A.S.)

• there are many other variants on stability (\(e.g. \), stability, uniform stability, exponential stability, \ldots)

• when \(f \) is nonlinear, establishing any kind of stability is usually very difficult
Energy and dissipation functions

consider nonlinear system \(\dot{x} = f(x) \), and function \(V : \mathbb{R}^n \rightarrow \mathbb{R} \)

we define \(\dot{V} : \mathbb{R}^n \rightarrow \mathbb{R} \) as \(\dot{V}(z) = \nabla V(z)^T f(z) \)

\(\dot{V}(z) \) gives \(\frac{d}{dt} V(x(t)) \) when \(z = x(t) \), \(\dot{x} = f(x) \)

we can think of \(V \) as generalized energy function, and \(-\dot{V} \) as the associated generalized dissipation function
Positive definite functions

A function \(V : \mathbb{R}^n \rightarrow \mathbb{R} \) is positive definite (PD) if

- \(V(z) \geq 0 \) for all \(z \)
- \(V(z) = 0 \) if and only if \(z = 0 \)
- all sublevel sets of \(V \) are bounded

The last condition is equivalent to \(V(z) \rightarrow \infty \) as \(z \rightarrow \infty \)

Example: \(V(z) = z^T P z \), with \(P = P^T \), is PD if and only if \(P > 0 \)
Lyapunov theory

Lyapunov theory is used to make conclusions about trajectories of a system \(\dot{x} = f(x) \) (e.g., G.A.S.) without finding the trajectories (i.e., solving the differential equation)

a typical Lyapunov theorem has the form:

- **if** there exists a function \(V : \mathbb{R}^n \rightarrow \mathbb{R} \) that satisfies some conditions on \(V \) and \(\dot{V} \)

- **then**, trajectories of system satisfy some property

if such a function \(V \) exists we call it a *Lyapunov function* (that proves the property holds for the trajectories)

Lyapunov function \(V \) can be thought of as *generalized energy function* for system
A Lyapunov boundedness theorem

suppose there is a function V that satisfies

- all sublevel sets of V are bounded
- $\dot{V}(z) \leq 0$ for all z

then, all trajectories are bounded, i.e., for each trajectory x there is an R such that $\|x(t)\| \leq R$ for all $t \geq 0$

in this case, V is called a Lyapunov function (for the system) that proves the trajectories are bounded
to prove it, we note that for any trajectory x

$$V(x(t)) = V(x(0)) + \int_0^t \dot{V}(x(\tau)) \, d\tau \leq V(x(0))$$

so the whole trajectory lies in $\{ z \mid V(z) \leq V(x(0)) \}$, which is bounded.

also shows: every sublevel set $\{ z \mid V(z) \leq a \}$ is invariant.
A Lyapunov global asymptotic stability theorem

suppose there is a function \(V \) such that

- \(V \) is positive definite
- \(\dot{V}(z) < 0 \) for all \(z \neq 0 \), \(\dot{V}(0) = 0 \)

then, every trajectory of \(\dot{x} = f(x) \) converges to zero as \(t \to \infty \) (i.e., the system is globally asymptotically stable)

interpretation:

- \(V \) is positive definite generalized energy function
- energy is always dissipated, except at 0
Proof

suppose trajectory \(x(t) \) does not converge to zero.

\(V(x(t)) \) is decreasing and nonnegative, so it converges to, say, \(\epsilon \) as \(t \to \infty \).

Since \(x(t) \) doesn’t converge to 0, we must have \(\epsilon > 0 \), so for all \(t \),
\[\epsilon \leq V(x(t)) \leq V(x(0)). \]

\(C = \{ z \mid \epsilon \leq V(z) \leq V(x(0)) \} \) is closed and bounded, hence compact. So \(\dot{V} \) (assumed continuous) attains its supremum on \(C \), i.e., \(\sup_{z \in C} \dot{V} = -a < 0 \). Since \(\dot{V}(x(t)) \leq -a \) for all \(t \), we have

\[V(x(T)) = V(x(0)) + \int_0^T \dot{V}(x(t)) \, dt \leq V(x(0)) - aT \]

which for \(T > V(x(0))/a \) implies \(V(x(0)) < 0 \), a contradiction.

So every trajectory \(x(t) \) converges to 0, i.e., \(\dot{x} = f(x) \) is G.A.S.
A Lyapunov exponential stability theorem

suppose there is a function V and constant $\alpha > 0$ such that

- V is positive definite
- $\dot{V}(z) \leq -\alpha V(z)$ for all z

then, there is an M such that every trajectory of $\dot{x} = f(x)$ satisfies

$$\|x(t)\| \leq Me^{-\alpha t/2}\|x(0)\|$$

(this is called global exponential stability (G.E.S.))

idea: $\dot{V} \leq -\alpha V$ gives guaranteed minimum dissipation rate, proportional to energy
Example

consider system

\[
\dot{x}_1 = -x_1 + g(x_2), \quad \dot{x}_2 = -x_2 + h(x_1)
\]

where \(|g(u)| \leq |u|/2, \ |h(u)| \leq |u|/2\)

two first order systems with nonlinear cross-coupling
let’s use Lyapunov theorem to show it’s globally asymptotically stable

we use \(V = \left(x_1^2 + x_2^2 \right) / 2 \)

required properties of \(V \) are clear (\(V \geq 0 \), etc.)

let’s bound \(\dot{V} \):

\[
\begin{align*}
\dot{V} & = x_1 \dot{x}_1 + x_2 \dot{x}_2 \\
& = -x_1^2 - x_2^2 + x_1 g(x_2) + x_2 h(x_1) \\
& \leq -x_1^2 - x_2^2 + |x_1 x_2| \\
& \leq -(1/2)(x_1^2 + x_2^2) \\
& = -V
\end{align*}
\]

where we use \(|x_1 x_2| \leq (1/2)(x_1^2 + x_2^2) \) (derived from \((|x_1| - |x_2|)^2 \geq 0\))

we conclude system is G.A.S. (in fact, G.E.S.)

\(\textit{without knowing the trajectories} \)
Lasalle’s theorem

Lasalle’s theorem (1960) allows us to conclude G.A.S. of a system with only $\dot{V} \leq 0$, along with an observability type condition

we consider $\dot{x} = f(x)$

suppose there is a function $V : \mathbb{R}^n \rightarrow \mathbb{R}$ such that

- V is positive definite
- $\dot{V}(z) \leq 0$
- the only solution of $\dot{w} = f(w), \dot{V}(w) = 0$ is $w(t) = 0$ for all t

then, the system $\dot{x} = f(x)$ is G.A.S.
• last condition means no nonzero trajectory can hide in the “zero dissipation” set

• unlike most other Lyapunov theorems, which extend to time-varying systems, Lasalle’s theorem requires time-invariance
A Lyapunov instability theorem

suppose there is a function \(V : \mathbb{R}^n \rightarrow \mathbb{R} \) such that

- \(\dot{V}(z) \leq 0 \) for all \(z \) (or just whenever \(V(z) \leq 0 \))
- there is \(w \) such that \(V(w) < V(0) \)

then, the trajectory of \(\dot{x} = f(x) \) with \(x(0) = w \) does not converge to zero (and therefore, the system is not G.A.S.)

to show it, we note that \(V(x(t)) \leq V(x(0)) = V(w) < V(0) \) for all \(t \geq 0 \)

but if \(x(t) \rightarrow 0 \), then \(V(x(t)) \rightarrow V(0) \); so we cannot have \(x(t) \rightarrow 0 \)
A Lyapunov divergence theorem

suppose there is a function $V : \mathbb{R}^n \rightarrow \mathbb{R}$ such that

- $\dot{V}(z) < 0$ whenever $V(z) < 0$
- there is w such that $V(w) < 0$

then, the trajectory of $\dot{x} = f(x)$ with $x(0) = w$ is unbounded, i.e.,

$$\sup_{t \geq 0} \|x(t)\| = \infty$$

(this is not quite the same as $\lim_{t \rightarrow \infty} \|x(t)\| = \infty$)
Proof of Lyapunov divergence theorem

Let $\dot{x} = f(x)$, $x(0) = w$. Let's first show that $V(x(t)) \leq V(w)$ for all $t \geq 0$.

If not, let T denote the smallest positive time for which $V(x(T)) = V(w)$. Then over $[0, T]$, we have $V(x(t)) \leq V(w) < 0$, so $\dot{V}(x(t)) < 0$, and so

$$\int_0^T \dot{V}(x(t)) \, dt < 0$$

the lefthand side is also equal to

$$\int_0^T \dot{V}(x(t)) \, dt = V(x(T)) - V(x(0)) = 0$$

so we have a contradiction.

It follows that $V(x(t)) \leq V(x(0))$ for all t, and therefore $\dot{V}(x(t)) < 0$ for all t.

Now suppose that $\|x(t)\| \leq R$, i.e., the trajectory is bounded.

$\{z \mid V(z) \leq V(x(0)), \|z\| \leq R\}$ is compact, so there is a $\beta > 0$ such that $\dot{V}(z) \leq -\beta$ whenever $V(z) \leq V(x(0))$ and $\|z\| \leq R$.
we conclude $V(x(t)) \leq V(x(0)) - \beta t$ for all $t \geq 0$, so $V(x(t)) \to -\infty$, a contradiction.
Converse Lyapunov theorems

a typical *converse Lyapunov theorem* has the form

- **if** the trajectories of system satisfy some property
- **then** there exists a Lyapunov function that proves it

a sharper converse Lyapunov theorem is more specific about the form of the Lyapunov function

example: if the linear system $\dot{x} = Ax$ is G.A.S., then there is a quadratic Lyapunov function that proves it (we’ll prove this later)
A converse Lyapunov G.E.S. theorem

suppose there is $\beta > 0$ and M such that each trajectory of $\dot{x} = f(x)$ satisfies
\[\|x(t)\| \leq Me^{-\beta t}\|x(0)\| \text{ for all } t \geq 0 \]
(called \textit{global exponential stability}, and is stronger than G.A.S.)

then, there is a Lyapunov function that proves the system is exponentially stable, \textit{i.e.}, there is a function $V : \mathbb{R}^n \rightarrow \mathbb{R}$ and constant $\alpha > 0$ s.t.

- V is positive definite
- $\dot{V}(z) \leq -\alpha V(z)$ for all z
Proof of converse G.E.S. Lyapunov theorem

suppose the hypotheses hold, and define

\[V(z) = \int_{0}^{\infty} \|x(t)\|^2 \, dt \]

where \(x(0) = z, \dot{x} = f(x) \)

since \(\|x(t)\| \leq Me^{-\beta t} \|z\| \), we have

\[V(z) = \int_{0}^{\infty} \|x(t)\|^2 \, dt \leq \int_{0}^{\infty} M^2 e^{-2\beta t} \|z\|^2 \, dt = \frac{M^2}{2\beta} \|z\|^2 \]

(which shows integral is finite)
let's find $\dot{V}(z) = \left. \frac{d}{dt} \right|_{t=0} V(x(t))$, where $x(t)$ is trajectory with $x(0) = z$

\[
\dot{V}(z) = \lim_{t \to 0} \frac{1}{t} (V(x(t)) - V(x(0))) \\
= \lim_{t \to 0} \frac{1}{t} \left(\int_{t}^{\infty} \|x(\tau)\|^2 \, d\tau - \int_{0}^{\infty} \|x(\tau)\|^2 \, d\tau \right) \\
= \lim_{t \to 0} \frac{-1}{t} \int_{0}^{t} \|x(\tau)\|^2 \, d\tau \\
= -\|z\|^2
\]

now let's verify properties of V

$V(z) \geq 0$ and $V(z) = 0 \iff z = 0$ are clear

finally, we have $\dot{V}(z) = -z^T z \leq -\alpha V(z)$, with $\alpha = 2\beta/M^2$
Finding Lyapunov functions

- there are many different types of Lyapunov theorems
- the key in all cases is to *find* a Lyapunov function and verify that it has the required properties
- there are several approaches to finding Lyapunov functions and verifying the properties

one common approach:

- decide form of Lyapunov function (*e.g.*, quadratic), parametrized by some parameters (called a *Lyapunov function candidate*)
- try to find values of parameters so that the required hypotheses hold
Other sources of Lyapunov functions

- value function of a related optimal control problem
- linear-quadratic Lyapunov theory (next lecture)
- computational methods
- converse Lyapunov theorems
- graphical methods (really!)

(as you might guess, these are all somewhat related)