Review Session 5

• a partial summary of the course

• no guarantees everything on the exam is covered here

• not designed to stand alone; use with the class notes
LQR

• balance good control and small input effort

• quadratic cost function

\[J(U) = \sum_{\tau=0}^{N-1} \left(x_{\tau}^T Q x_{\tau} + u_{\tau}^T R u_{\tau} \right) + x_N^T Q_f x_N \]

• \(Q, Q_f \) and \(R \) are state cost, final state cost, input cost matrices
Solving LQR problems

• can solve as least-squares problem

• solve more efficiently with dynamic programming: use value function

\[
V_t(z) = \min_{u_t, \ldots, u_{N-1}} \sum_{\tau=t}^{N-1} \left(x_\tau^T Q x_\tau + u_\tau^T R u_\tau \right) + x_N^T Q_f x_N
\]

subject to \(x_t = z, x_{\tau+1} = A x_\tau + B u_\tau, \tau = t, \ldots, T \)

• \(V_t(z) \) is the minimum LQR cost-to-go from state \(z \) at time \(t \)

• can show by recursion that \(V_t(z) = z^T P_t z; u_{t, \text{lqr}} = K_t x_t \)

• get Riccati recursion, runs backwards in time
Steady-state LQR

• usually P_t in value function converges rapidly as t decreases below N

• steady-state value P_{ss} satisfies

$$P_{ss} = Q + A^T P_{ss} A - A^T P_{ss} B (R + B^T P_{ss} B)^{-1} B^T P_{ss} A$$

• this is the discrete-time algebraic Riccati equation (ARE)

• for t not close to horizon N, LQR optimal input is approximately a linear, constant state feedback
LQR extensions

- time-varying systems
- time-varying cost matrices
- tracking problems (with state/input offsets)
- Gauss-Newton LQR for nonlinear dynamical systems
- can view LQR as solution of constrained minimization problem, via Lagrange multipliers
Infinite horizon LQR

• problem becomes: choose u_0, u_1, \ldots to minimize

$$J = \sum_{\tau=0}^{\infty} (x_\tau^T Q x_\tau + u_\tau^T R u_\tau)$$

• infinite dimensional problem

• possibly no solution in general

• if (A, B) is controllable, then for any x^{init}, there’s a length-n input sequence that steers x to zero and keeps it there
Hamilton-Jacobi equation

• define value function \(V(z) = z^T P z \) as minimum LQR cost-to-go

• satisfies Hamilton-Jacobi equation

\[
V(z) = \min_w (z^T Q z + w^T R w + V(A z + B w)) ,
\]

• after minimizing over \(w \), HJ equation becomes

\[
z^T P z = z^T Q z + w^* T R w^* + (A z + B w^*)^T P (A z + B w^*)
\]

\[
= z^T (Q + A^T P A - A^T P B (R + B^T P B)^{-1} B^T P A) z
\]

• holds for all \(z \), so \(P \) satisfies the ARE (thus, constant state feedback)

\[
P = Q + A^T P A - A^T P B (R + B^T P B)^{-1} B^T P A
\]
Receding-horizon LQR control

- find sequence that minimizes first T-step-ahead LQR cost from current position then use just the first input

- in general, optimal T-step-ahead LQR control has constant state feedback

- state feedback gain converges to infinite horizon optimal as horizon becomes long (assuming controllability)

- closed loop system is stable if (Q, A) observable and (A, B) controllable
Continuous-time LQR

• choose \(u : [0, T] \rightarrow \mathbb{R}^m \) to minimize

\[
J = \int_0^T \left(x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau) \right) d\tau + x(T)^T Q_f x(T)
\]

• infinite dimensional problem

• can solve via dynamic programming, \(V_t \) again quadratic; \(P_t \) found from a differential equation, running backwards in time

• LQR optimal \(u \) easily expressed in terms of \(P_t \)

• can also handle time-varying/tracking problems
Continuous-time LQR in steady-state

- usually P_t converges rapidly as t decreases below T

- limit P_{ss} satisfies continuous-time ARE

$$A^T P + PA - PBR^{-1}B^TP + Q = 0$$

- can solve using Riccati differential equation, or directly, via Hamiltonian

- for t not near T, LQR optimal input is approximately a linear constant state feedback

- (can also derive via discretization or Lagrange multipliers)
Linear quadratic stochastic control

- add IID process noise w_t: $x_{t+1} = Ax_t + Bu_t + w_t$

- objective becomes

$$J = \mathbb{E}\left(\sum_{t=0}^{N-1} (x_t^T Q x_t + u_t^T R u_t) + x_N^T Q f x_N \right)$$

- choose input to minimize J, after knowing the current state, but before knowing the disturbance

- can solve via dynamic programming

- optimal policy is linear state feedback (same form as deterministic LQR)

- strangely, optimal policy is the same as LQR, doesn’t depend on X, W
Invariant subspaces

• \mathcal{V} is A-invariant if $A\mathcal{V} \subseteq \mathcal{V}$, i.e., $v \in \mathcal{V} \implies Av \in \mathcal{V}$

• e.g., controllable/unobservable subspaces for linear systems

• if $\mathcal{R}(M)$ is A-invariant, then there is a matrix X such that $AM = MX$

• converse is also true: if there is an X such that $AM = MX$, then $\mathcal{R}(M)$ is A-invariant
PBH controllability criterion

- \((A, B)\) is controllable if and only if

\[
\text{Rank} \begin{bmatrix} sI - A & B \end{bmatrix} = n \quad \text{for all} \quad s \in \mathbb{C}
\]

or,

- \((A, B)\) is uncontrollable if and only if there is a \(w \neq 0\) with

\[
w^T A = \lambda w^T, \quad w^T B = 0
\]

i.e., a left eigenvector is orthogonal to columns of \(B\)

- mode associated with left eigenvector \(w\) is uncontrollable if \(w^T B = 0\),
PBH observability criterion

- \((C, A)\) is observable if and only if

\[
\text{Rank} \begin{bmatrix} sI - A \\ C \end{bmatrix} = n \text{ for all } s \in \mathbb{C}
\]

or,

- \((C, A)\) is unobservable if and only if there is a \(v \neq 0\) with

\[
Av = \lambda v, \quad Cv = 0
\]

i.e., a (right) eigenvector is in the nullspace of \(C\)

- mode associated with right eigenvector \(v\) is unobservable if \(Cv = 0\)
Estimation

• minimum mean-square estimator (MMSE) is, in general, $E(x|y)$

• for jointly Gaussian x and y, MMSE estimator of x is affine function of y

$$\hat{x} = \phi_{\text{mmse}}(y) = \bar{x} + \Sigma_{xy}\Sigma_y^{-1}(y - \bar{y})$$

• when x, y aren’t jointly Gaussian, best linear unbiased estimator is

$$\hat{x} = \phi_{\text{blu}}(y) = \bar{x} + \Sigma_{xy}\Sigma_y^{-1}(y - \bar{y})$$

• ϕ_{blu} is unbiased ($E\hat{x} = E\bar{x}$), often works well, has MMSE among all affine estimators

• given A, Σ_x, Σ_v, can evaluate Σ_{est} before knowing measurements (can do experiment design)
Linear system with stochastic process

- covariance $\Sigma_x(t)$ satisfies a Lyapunov-like linear dynamical system

$$\Sigma_x(t + 1) = A\Sigma_x(t)A^T + B\Sigma_u(t)B^T + A\Sigma_{xu}(t)B^T + B\Sigma_{ux}(t)A^T$$

- if $\Sigma_{xu}(t) = 0$ (x and u uncorrelated), we have the Lyapunov iteration

$$\Sigma_x(t + 1) = A\Sigma_x(t)A^T + B\Sigma_u(t)B^T$$

- if (and only if) A is stable, converges to steady-state covariance which satisfies the Lyapunov equation

$$\Sigma_x = A\Sigma_x A^T + B\Sigma_u B^T$$
Kalman filter

- estimate current or next state, based on current and past outputs
- recursive, so computationally efficient (can express as Riccati recursion)
- measurement update
 \[
 \hat{x}_{t|t} = \hat{x}_{t|t-1} + \Sigma_{t|t-1}C^T \left(C\Sigma_{t|t-1}C^T + V \right)^{-1} (y_t - C\hat{x}_{t|t-1})
 \]
 \[
 \Sigma_{t|t} = \Sigma_{t|t-1} - \Sigma_{t|t-1}C^T \left(C\Sigma_{t|t-1}C^T + V \right)^{-1} C\Sigma_{t|t-1}
 \]
- time update
 \[
 \hat{x}_{t+1|t} = A\hat{x}_{t|t}, \quad \Sigma_{t+1|t} = A\Sigma_{t|t}A^T + W
 \]
- can compute \(\Sigma_{t|t-1} \) before any observations are made
- steady-state error covariance satisfies ARE
 \[
 \hat{\Sigma} = A\hat{\Sigma}A^T + W - A\hat{\Sigma}C^T \left(C\hat{\Sigma}C^T + V \right)^{-1} C\hat{\Sigma}A^T
 \]
Approximate nonlinear filtering

• in general, exact solution is impractical; requires propagating infinite dimensional conditional densities

• extended Kalman filter: use affine approximations of nonlinearities, Gaussian model

• other methods (e.g., particle filters): based on Monte Carlo methods that sample the random variables

• usually heuristic, unless problems are very small
Conservation and dissipation

- A set $C \subseteq \mathbb{R}^n$ is invariant with respect to autonomous, time-invariant, nonlinear $\dot{x} = f(x)$ if for every trajectory x,

$$x(t) \in C \implies x(\tau) \in C \text{ for all } \tau \geq t$$

- Every trajectory that enters or starts in C must stay there.

- Scalar valued function ϕ is a conserved quantity for $\dot{x} = f(x)$ if for every trajectory x, $\phi(x(t))$ is constant.

- ϕ is a dissipated quantity for $\dot{x} = f(x)$ if for every trajectory x, $\phi(x(t))$ is (weakly) decreasing.
Quadratic functions and linear dynamical systems

continuous time: linear system \(\dot{x} = Ax \), quadratic form \(\phi(z) = z^T P z \)

- \(\phi \) is conserved if and only if \(A^T P + PA = 0 \)
- \(\phi \) is dissipated if and only if \(A^T P + PA \leq 0 \)

discrete time: linear system \(x_{t+1} = Ax_t \), quadratic form \(\phi(z) = z^T P z \)

- \(\phi \) is conserved if and only if \(A^T PA - P = 0 \)
- \(\phi \) is dissipated if and only if \(A^T PA - P \leq 0 \)
Stability

consider nonlinear time-invariant system \(\dot{x} = f(x) \)

- \(x_e \) is an equilibrium point if \(f(x_e) = 0 \)

- system is globally asymptotically stable (GAS) if for every trajectory \(x \), \(x(t) \to x_e \) as \(t \to \infty \)

- system is locally asymptotically stable (LAS) near or at \(x_e \), if there is an \(R > 0 \) such that \(\|x(0) - x_e\| \leq R \implies x(t) \to x_e \) as \(t \to \infty \)

- for linear systems (with \(x_e = 0 \)), LAS \(\iff \) GAS \(\iff \Re \lambda_i(A) < 0 \)
Energy and dissipation functions

consider nonlinear time-invariant system $\dot{x} = f(x)$, function $V : \mathbb{R}^n \rightarrow \mathbb{R}$

• define $\dot{V} : \mathbb{R}^n \rightarrow \mathbb{R}$ as $\dot{V}(z) = \nabla V(z)^T f(z)$

• $\dot{V}(z)$ gives $\frac{d}{dt} V(x(t))$ when $z = x(t)$, $\dot{x} = f(x)$

• can think of V as generalized energy function, $-\dot{V}$ as the associated generalized dissipation function

• V is positive definite if $V(z) \geq 0$ for all z, $V(z) = 0$ if and only if $z = 0$ and all sublevel sets of V are bounded ($V(z) \rightarrow \infty$ as $z \rightarrow \infty$)
Lyapunov theory

• used to make conclusions about of system trajectories, without finding the trajectories

• boundedness: if there is a (Lyapunov function) V with all sublevel sets bounded, and $\dot{V}(z) \leq 0$ for all z, then all trajectories are bounded

• global asymptotic stability: if there is a positive definite V with $\dot{V}(z) < 0$ for all $z \neq 0$ and $\dot{V}(0) = 0$, then every trajectory of $\dot{x} = f(x)$ converges to zero as $t \to \infty$

• exponential stability: if there is a positive definite V, and constant $\alpha > 0$ with $\dot{V}(z) \leq -\alpha V(z)$ for all z, then there is an M such that every trajectory satisfies $\|x(t)\| \leq M e^{-\alpha t/2} \|x(0)\|$
Lasalle’s theorem

- can conclude GAS of a system with only $\dot{V} \leq 0$ and an observability-type condition

- if there is a positive definite V with $\dot{V}(z) \leq 0$, and the only solution of $\dot{w} = f(w)$, $V(w) = 0$ is $w(t) = 0$ for all t, then the system is GAS

- requires time-invariance
Converse Lyapunov theorems

- if a linear system is GAS, there is a quadratic Lyapunov function that proves it

- if a system is globally exponentially stable, there is a Lyapunov function that proves it
Linear quadratic Lyapunov theory

- Lyapunov equation: $A^T P + PA + Q = 0$

- for linear system $\dot{x} = Ax$, if $V(z) = z^T P z$, then $\dot{V}(z) = (Az)^T P z + z^T P (Az) = -z^T Q z$

- if $z^T P z$ is the generalized energy, then $z^T Q z$ is the associated generalized dissipation

- boundedness: if $P > 0$, $Q \geq 0$, then all trajectories are bounded, and the ellipsoids $\{z \mid z^T P z \leq a\}$ are invariant

- stability: if $P > 0$, $Q > 0$, then the system is GAS

- an extension from Lasalle’s theorem: if $P > 0$, $Q \geq 0$ and (Q, A) observable, then the system is GAS

- if $Q \geq 0$ and $P \not\geq 0$, then A is not stable
The Lyapunov operator

- the Lyapunov operator is given by

\[\mathcal{L}(P) = A^T P + PA \]

- if \(A \) is stable, Lyapunov operator is nonsingular

- if \(A \) has imaginary eigenvalue, then Lyapunov operator is singular

- thus, if \(A \) is stable, for any \(Q \) there is exactly one solution \(P \) of the Lyapunov equation \(A^T P + PA + Q = 0 \)

- efficient ways to solve the Lyapunov equation (review session 3)
The Lyapunov integral

• if A is stable, explicit formula for solution of Lyapunov equation:

$$P = \int_0^\infty e^{tA^T} Q e^{tA} \, dt$$

• if A is stable, P is unique solution of Lyapunov equation, then

$$V(z) = z^T P z = \int_0^\infty x(t)^T Q x(t) \, dt$$

(where $\dot{x} = Ax$ and $x(0) = z$)

• thus, $V(z)$ is cost-to-go from point z, and integral quadratic cost function with matrix Q

• can use to evaluate quadratic integrals
Further Lyapunov results

- All linear quadratic Lyapunov results have discrete-time counterparts.

- Discrete-time Lyapunov equation is

 \[A^T P A - P + Q = 0 \]

 (if \(V(z) = z^T P z \), then \(\delta V(z) = -z^T Q z \))

- For a nonlinear system \(\dot{x} = f(x) \) with \(x_e \) an equilibrium point, if the linearized system near \(x_e \) is stable, then the nonlinear system is locally asymptotically stable (and nearly vice versa).
LMIs

- the Lyapunov inequality $A^TP + PA + Q \leq 0$ is an LMI in variable P

- P satisfies the Lyapunov LMI if and only if the quadratic form
 \[V(\dot{z}) = \dot{z}^TP\dot{z} \text{ satisfies } \dot{V}(z) \leq -z^TQz \]

- bounded-real LMI: if P satisfies
 \[
 \begin{bmatrix}
 A^TP + PA + C^TC & PB \\
 B^TP & -\gamma^2I
 \end{bmatrix} \leq 0, \quad P \succeq 0
 \]

then the quadratic Lyapunov function $V(z) = z^TPz$ proves the RMS gain of the system is no more than γ
Using LMIs

• practical approach to strict matrix inequalities: if inequalities are homogeneous in x, replace $F_{\text{strict}}(x) > 0$ with $F_{\text{strict}}(x) \geq I$

• if inequalities aren’t homogeneous, replace $F_{\text{strict}}(x) > 0$ with $F_{\text{strict}}(x) \geq \epsilon I$, with ϵ small and positive

• if we have $\dot{x}(t) = A(t)x(t)$, with $A(t) \in \{A_1, \ldots, A_K\}$, can use multiple simultaneous LMIs to find a simultaneous Lyapunov function that establishes a property for all trajectories

• can’t be done analytically, but possible to do numerically

• more generally, can globally and efficiently solve SDPs:

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad F_0 + x_1 F_1 + \cdots + x_n F_n \geq 0 \\
& \quad Ax = b
\end{align*}
\]
S-procedure

• for two quadratic forms, if and (with a constraint qualification) only if there is a $\tau \geq 0$ with $F_0 \geq \tau F_1$, then $z^T F_1 z \geq 0 \implies z^T F_0 z \geq 0$

• can also replace \geq with $>$

• for multiple quadratic forms, if there are $\tau_1, \ldots, \tau_k \geq 0$ with

$$ F_0 \geq \tau_1 F_1 + \cdots + \tau_k F_k $$

then, for all z,

$$ z^T F_1 z \geq 0, \ldots, z^T F_k z \geq 0 \implies z^T F_0 z \geq 0 $$

• can solve using LMIs
Systems with sector nonlinearities

• a function $\phi : \mathbb{R} \to \mathbb{R}$ is said to be in sector $[l, u]$ if for all $q \in \mathbb{R}$, $p = \phi(q)$ lies between lq and uq

• a (single nonlinearity) Lur’e system has the form

$$\dot{x} = Ax + Bp, \quad q = Cx, \quad p = \phi(t, q)$$

where $\phi(t, \cdot) : \mathbb{R} \to \mathbb{R}$ is in sector $[l, u]$ for each t

• goal: prove stability or bound using only the sector information
GAS of Lur’e system

• can express GAS of Lur’e system using quadratic Lyapunov function

\[V(z) = z^T P z \]

as requiring \[\dot{V} + \alpha V \leq 0 \], equivalent to

\[
\begin{bmatrix}
z \\
p
\end{bmatrix}^T
\begin{bmatrix}
A^T P + PA + \alpha P & PB \\
B^T P & 0
\end{bmatrix}
\begin{bmatrix}
z \\
p
\end{bmatrix} \leq 0
\]

whenever

\[
\begin{bmatrix}
z \\
p
\end{bmatrix}^T
\begin{bmatrix}
\sigma C^T C & -\nu C^T \\
-\nu C & 1
\end{bmatrix}
\begin{bmatrix}
z \\
p
\end{bmatrix} \leq 0
\]

• can convert this to the LMI (with variables \(P \) and \(\tau \))

\[
\begin{bmatrix}
A^T P + PA + \alpha P - \tau \sigma C^T C & PB + \tau \nu C^T \\
B^T P + \tau \nu C & -\tau
\end{bmatrix} \leq 0, \quad P \geq I
\]

• can sometimes extend to case with multiple nonlinearities
Perron-Frobenius theory

• a nonnegative matrix A is regular if for some $k \geq 1$, $A^k > 0$
 (path of length k from every node to every other node)

• if A is regular, then there is a real, positive, strictly dominant, simple
 Perron-Frobenius eigenvalue λ_{pf}, with positive left and right
 eigenvectors

• if we only have $A \geq 0$, then there is an eigenvalue λ_{pf} of A that is real,
 nonnegative and (non-strictly) dominant, and has (possibly not unique)
 nonnegative left and right eigenvectors

• For a Markov chain with transition matrix P, if P is regular, the
 distribution always converges to the unique invariant distribution $\pi > 0$,
 associated with a simple, dominant eigenvalue of 1

• rate of convergence depends on second largest eigenvalue magnitude
Max-min/min-max ratio characterization

- Perron-Frobenius eigenvalue is optimal value of two optimization problems

\[
\begin{align*}
\text{maximize} & \quad \min_i \frac{(Ax)_i}{x_i} \\
\text{subject to} & \quad x > 0
\end{align*}
\]

and

\[
\begin{align*}
\text{minimize} & \quad \max_i \frac{(Ax)_i}{x_i} \\
\text{subject to} & \quad x > 0
\end{align*}
\]

- the optimal \(x \) is the Perron-Frobenius eigenvector
Linear Lyapunov functions

• suppose $c > 0$, and consider the linear Lyapunov function $V(z) = c^T z$

• if $V(Az) \leq \delta V(z)$ for some $\delta < 1$ and all $z \geq 0$, then V proves (nonnegative) trajectories converge to zero

• a nonnegative regular system is stable if and only if there is a linear Lyapunov function that proves it
Continuous time results

- \mathbb{R}_+^n is invariant under $\dot{x} = Ax$ if and only if $A_{ij} \geq 0$ for $i \neq j$

- such matrices are called Metzler matrices

- A has a real, dominant eigenvalue λ_{metzler} that is real and has associated nonnegative left and right eigenvectors

- analogs exist with other discrete-time results
Exam advice

- five questions
- determine the topic(s) each question covers
- guess the form the problem statement should take
- manipulate (‘hammer’) the question into that standard form
- explain things as simply as possible; if your solution is extremely complicated, you’re probably missing something
- we’re not especially concerned about boundary conditions or edge cases, but mention any assumptions you make