Disciplined Convex Programming and CVX

Stephen Boyd
Electrical Engineering Department
Stanford University

Convex Optimization, Boyd & Vandenberghe
Outline

• cone program solvers
• modeling systems
• disciplined convex programming
• CVX (CVXPY, Convex.jl)
Cone program solvers

- **LP solvers**
 - many, open source and commercial

- **cone solvers**
 - each handles combinations of a subset of LP, SOCP, SDP, EXP cones
 - open source: SDPT3, SeDuMi, CVXOPT, CSDP, ECOS, SCS, . . .
 - commercial: Mosek, Gurobi, Cplex, . . .

- you’ll write a basic cone solver later in the course
Transforming problems to cone form

- lots of tricks for transforming a problem into an equivalent cone program
 - introducing slack variables
 - introducing new variables that upper bound expressions

- these tricks greatly extend the applicability of cone solvers

- writing code to carry out this transformation is painful

- **modeling systems** automate this step
Modeling systems

A typical modeling system

• automates transformation to cone form; supports
 – declaring optimization variables
 – describing the objective function
 – describing the constraints
 – choosing (and configuring) the solver

• when given a problem instance, calls the solver

• interprets and returns the solver’s status (optimal, infeasible, . . .)

• (when solved) transforms the solution back to original form
Some current modeling systems

- AMPL & GAMS (proprietary)
 - developed in the 1980s, still widely used in traditional OR
 - no support for convex optimization
- YALMIP (‘Yet Another LMI Parser’, matlab)
 - first object-oriented convex optimization modeling system
- CVX (matlab)
- CVXPY (python, GPL)
- Convex.jl (Julia, GPL, merging into JUMP)
- CVX, CVXPY, and Convex.jl collectively referred to as CVX*
Disciplined convex programming

- describe objective and constraints using expressions formed from
 - a set of basic atoms (affine, convex, concave functions)
 - a restricted set of operations or rules (that preserve convexity)

- modeling system keeps track of affine, convex, concave expressions

- rules ensure that
 - expressions recognized as convex are convex
 - but, some convex expressions are not recognized as convex

- problems described using DCP are convex by construction

- all convex optimization modeling systems use DCP
CVX

- uses DCP
- runs in Matlab, between the `cvx_begin` and `cvx_end` commands
- relies on SDPT3 or SeDuMi (LP/SOCP/SDP) solvers
- refer to user guide, online help for more info
- the CVX example library has more than a hundred examples
Example: Constrained norm minimization

A = randn(5, 3);
b = randn(5, 1);
cvx_begin
 variable x(3);
 minimize(norm(A*x - b, 1))
 subject to
 -0.5 <= x;
 x <= 0.3;
cvx_end

- between cvx_begin and cvx_end, x is a CVX variable
- statement subject to does nothing, but can be added for readability
- inequalities are interpreted elementwise
What CVX does

after `cvx_end`, CVX

- transforms problem into an LP
- calls solver SDPT3
- overwrites (object) `x` with (numeric) optimal value
- assigns problem optimal value to `cvx_optval`
- assigns problem status (which here is `Solved`) to `cvx_status`

(had problem been infeasible, `cvx_status` would be `Infeasible` and `x` would be `NaN`
Variables and affine expressions

• declare variables with variable name[(dims)] [attributes]
 - variable x(3);
 - variable C(4,3);
 - variable S(3,3) symmetric;
 - variable D(3,3) diagonal;
 - variables y z;

• form affine expressions
 - A = randn(4, 3);
 - variables x(3) y(4);
 - 3*x + 4
 - A*x - y
 - x(2:3)
 - sum(x)
Some functions

<table>
<thead>
<tr>
<th>function</th>
<th>meaning</th>
<th>attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>norm(x, p)</td>
<td>$|x|_p$</td>
<td>cvx</td>
</tr>
<tr>
<td>square(x)</td>
<td>x^2</td>
<td>cvx</td>
</tr>
<tr>
<td>square_pos(x)</td>
<td>$(x_+)^2$</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td>pos(x)</td>
<td>x_+</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td>sum_largest(x,k)</td>
<td>$x[1] + \cdots + x[k]$</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td>sqrt(x)</td>
<td>\sqrt{x} ($x \geq 0$)</td>
<td>ccv, nondecr</td>
</tr>
<tr>
<td>inv_pos(x)</td>
<td>$1/x$ ($x > 0$)</td>
<td>cvx, nonincr</td>
</tr>
<tr>
<td>max(x)</td>
<td>$\max{x_1, \ldots, x_n}$</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td>quad_over_lin(x,y)</td>
<td>$\frac{x^2}{y}$ ($y > 0$)</td>
<td>cvx, nonincr</td>
</tr>
<tr>
<td>lambda_max(X)</td>
<td>$\lambda_{\max}(X)$ ($X = X^T$)</td>
<td>cvx</td>
</tr>
<tr>
<td>huber(x)</td>
<td>$\begin{cases} x^2, &</td>
<td>x</td>
</tr>
</tbody>
</table>
Composition rules

• can combine atoms using valid composition rules, \textit{e.g.}:

 – a convex function of an affine function is convex
 – the negative of a convex function is concave
 – a convex, nondecreasing function of a convex function is convex
 – a concave, nondecreasing function of a concave function is concave
Composition rules — multiple arguments

• for convex h, $h(g_1, \ldots, g_k)$ is recognized as convex if, for each i,
 – g_i is affine, or
 – g_i is convex and h is nondecreasing in its ith arg, or
 – g_i is concave and h is nonincreasing in its ith arg

• for concave h, $h(g_1, \ldots, g_k)$ is recognized as concave if, for each i,
 – g_i is affine, or
 – g_i is convex and h is nonincreasing in ith arg, or
 – g_i is concave and h is nondecreasing in ith arg
Valid (recognized) examples

u, v, x, y are scalar variables; X is a symmetric 3×3 variable

- convex:
 - $\text{norm}(A\times x - y) + 0.1\times\text{norm}(x, 1)$
 - $\text{quad_over_lin}(u - v, 1 - \text{square}(v))$
 - $\lambda_{\text{max}}(2\times X - 4\times\text{eye}(3))$
 - $\text{norm}(2\times X - 3, \text{'fro'})$

- concave:
 - $\min(1 + 2\times u, 1 - \max(2, v))$
 - $\sqrt{v} - 4.55\times\text{inv_pos}(u - v)$
Rejected examples

u, v, x, y are scalar variables

• neither convex nor concave:
 – \(\text{square}(x) - \text{square}(y) \)
 – \(\text{norm}(A \cdot x - y) - 0.1 \cdot \text{norm}(x, 1) \)

• rejected due to limited DCP ruleset:
 – \(\sqrt{\text{sum}(\text{square}(x))} \) (is convex; could use \(\text{norm}(x) \))
 – \(\text{square}(1 + x^2) \) (is convex; could use \(\text{square}_\text{pos}(1 + x^2) \), or \(1 + 2 \cdot \text{pow}_\text{pos}(x, 2) + \text{pow}_\text{pos}(x, 4) \))
Sets

- some constraints are more naturally expressed with convex sets
- sets in CVX work by creating unnamed variables constrained to the set
- examples:
 - semidefinite(n)
 - nonnegative(n)
 - simplex(n)
 - lorentz(n)
- semidefinite(n), say, returns an unnamed (symmetric matrix) variable that is constrained to be positive semidefinite
Using the semidefinite cone

variables: X (symmetric matrix), z (vector), t (scalar)
constants: A and B (matrices)

- $X = \text{semidefinite}(n)$
 - means $X \in S^n_+$ (or $X \succeq 0$)

- $A^*XA' - X = B*\text{semidefinite}(n)*B'$
 - means $\exists Z \succeq 0$ so that $AXA^T - X = BZB^T$

- $[X \ z; \ z' \ t] = \text{semidefinite}(n+1)$
 - means
 \[
 \begin{bmatrix}
 X & z \\
 z^T & t
 \end{bmatrix} \succeq 0
 \]
Objectives and constraints

- **objective** can be
 - minimize(convex expression)
 - maximize(concave expression)
 - omitted (feasibility problem)

- **constraints** can be
 - convex expression <= concave expression
 - concave expression >= convex expression
 - affine expression == affine expression
 - omitted (unconstrained problem)
More involved example

A = randn(5);
A = A’*A;
cvx_begin
 variable X(5, 5) symmetric;
 variable y;
 minimize(norm(X) - 10*sqrt(y))
 subject to
 X - A == semidefinite(5);
 X(2,5) == 2*y;
 X(3,1) >= 0.8;
 y <= 4;

cvx_end
Defining new functions

- can make a new function using existing atoms

- example: the convex deadzone function

\[
 f(x) = \max\{|x| - 1, 0\} = \begin{cases}
 0, & |x| \leq 1 \\
 x - 1, & x > 1 \\
 1 - x, & x < -1
\end{cases}
\]

- create a file deadzone.m with the code

```matlab
function y = deadzone(x)
    y = max(abs(x) - 1, 0)
end
```

- deadzone makes sense both within and outside of CVX
Defining functions via incompletely specified problems

- Suppose f_0, \ldots, f_m are convex in (x, z)
- Let $\phi(x)$ be optimal value of convex problem, with variable z and parameter x

 minimize
 \[f_0(x, z) \]
 subject to
 \[f_i(x, z) \leq 0, \quad i = 1, \ldots, m \]
 \[A_1 x + A_2 z = b \]

- ϕ is a convex function
- Problem above sometimes called *incompletely specified* since x isn’t (yet) given
- An incompletely specified concave maximization problem defines a concave function
CVX functions via incompletely specified problems

implement in cvx with
function cvx_optval = phi(x)
cvx_begin
 variable z;
 minimize(f0(x, z))
 subject to
 f1(x, z) <= 0; ...
 A1*x + A2*z == b;
(cvx_end

• function phi will work for numeric x (by solving the problem)

• function phi can also be used inside a CVX specification, wherever a convex function can be used
Simple example: Two element max

• create file max2.m containing

```matlab
function cvx_optval = max2(x, y)
cvx_begin
    variable t;
    minimize(t)
    subject to
        x <= t;
        y <= t;
    cvx_end

• the constraints define the epigraph of the max function
• could add logic to return max(x, y) when x, y are numeric
  (otherwise, an LP is solved to evaluate the max of two numbers!)"
A more complex example

• \( f(x) = x + x^{1.5} + x^{2.5} \), with \( \text{dom } f = \mathbb{R}_+ \), is a convex, monotone increasing function

• its inverse \( g = f^{-1} \) is concave, monotone increasing, with \( \text{dom } g = \mathbb{R}_+ \)

• there is no closed form expression for \( g \)

• \( g(y) \) is optimal value of problem

\[
\begin{align*}
\text{maximize} & \quad t \\
\text{subject to} & \quad t^+_+ + t^{1.5}_+ + t^{2.5}_+ \leq y
\end{align*}
\]

(for \( y < 0 \), this problem is infeasible, so optimal value is \(-\infty\))
• implement as
  
  function cvx_optval = g(y)
  cvx_begin
    variable t;
    maximize(t)
    subject to
      pos(t) + pow_pos(t, 1.5) + pow_pos(t, 2.5) <= y;
  cvx_end

• use it as an ordinary function, as in \( g(14.3) \), or within CVX as a concave function:
  
  cvx_begin
    variables x y;
    minimize(quad_over_lin(x, y) + 4*x + 5*y)
    subject to
      g(x) + 2*g(y) >= 2;
  cvx_end
Example

• optimal value of LP

\[ f(c) = \inf \{ c^T x \mid Ax \leq b \} \]

is concave function of \( c \)

• by duality (assuming feasibility of \( Ax \leq b \)) we have

\[ f(c) = \sup \{-\lambda^T b \mid A^T \lambda + c = 0, \ \lambda \succeq 0 \} \]
• define $f$ in CVX as

```matlab
function cvx_optval = lp_opt_val(A,b,c)
cvx_begin
 variable lambda(length(b));
 maximize(-lambda'*b);
 subject to
 A'*lambda + c == 0; lambda >= 0;
cvx_end
```

• in `lp_opt_val(A,b,c)` $A$, $b$ must be constant; $c$ can be affine
CVX hints/warnings

- watch out for = (assignment) versus == (equality constraint)
- $X \geq 0$, with matrix $X$, is an elementwise inequality
- $X \geq \text{semidefinite}(n)$ means: $X$ is elementwise larger than some positive semidefinite matrix (which is likely not what you want)
- writing subject to is unnecessary (but can look nicer)
- many problems traditionally stated using convex quadratic forms can posed as norm problems (which can have better numerical properties):
  \[ x'P x \leq 1 \text{ can be replaced with } \text{norm}(\text{chol}(P) x) \leq 1 \]