
Exercises for EE364b

Stephen Boyd John Duchi Mert Pilanci

May 16, 2022

Contents

1 Subgradients 2

2 Generalized subgradients 8

3 Subgradient methods 10

4 Stochastic subgradient methods 20

5 Localization methods 27

6 Decomposition methods 32

7 Monotone operators and operator splitting 35

8 ADMM 40

9 Sequential convex programming 45

10 Conjugate-gradient and truncated Newton methods 47

11 `1 methods for convex-cardinality problems 50

12 Optimization with uncertain data 53

13 Model predictive control 56

14 Branch and bound 57

15 Semidefinite relaxations and nonconvex problems 58

1

1 Subgradients

1.1 For each of the following convex functions, explain how to calculate a subgradient at a
given x.

(a) f(x) = maxi=1,...,m(aTi x+ bi).

(b) f(x) = maxi=1,...,m |aTi x+ bi|.
(c) f(x) = maxi=1,...,m

(
− log

(
aTi x+ bi

))
. You may assume x is in the domain of f .

(d) f(x) = sup0≤t≤1 p(t), where p(t) = x1 + x2t+ · · ·+ xnt
n−1.

(e) f(x) = x[1] + · · ·+ x[k], where x[i] denotes the ith largest element of the vector x.

(f) f(x) = infAy�b ‖x − y‖2, i.e., the square of the distance of x to the polyhedron
defined by Ay � b. You may assume that the inequalities Ay � b are strictly
feasible.

(g) f(x) = supAy�b y
Tx, i.e., the optimal value of an LP as a function of the cost

vector. (You can assume that the polyhedron defined by Ay � b is bounded.)

1.2 Convex functions that are not subdifferentiable. Verify that the following functions,
defined on the interval [0,∞), are convex, but not subdifferentiable at x = 0.

(a) f(0) = 1, and f(x) = 0 for x > 0.

(b) f(x) = −
√
x.

1.3 Explain how to find a subgradient or quasigradient of the following functions at a given
point x0. If the function is concave or quasiconcave, find a subgradient or quasigradient
of −f . (Please make it clear whether you are finding a subgradient or quasigradient,
and whether it is for f or −f .) Try to find efficient ways to evaluate a subgradient
or quasigradient; in particular, try to avoid ways that require a number of operations
that grows exponentially with the problem sizes.

(a) f(x) = x[1] + x[2] on Rn. (Recall that x[i] denotes the ith greatest component of
x).

(b) f(x) = ‖x‖∞ = maxk |xk|
(c) The function of problem 3.24(h) of the book: for p in the probability simplex,

f(p) = min{β − α|Prob(x ∈ [α, β]) ≥ 0.9},

where x is a random variable taking values a1, . . . , an with probabilities p1, . . . , pn,
respectively.

1.4 Quantiles. Given a fixed vector x ∈ Rn, define f : R→ R as

f(µ) =
n∑
i=1

α(xi − µ)+ + (1− α)(xi − µ)−,

where α ∈ (0, 1). Note that for α = 1/2, this is ‖x− µ1‖1/2.

2

(a) Find the subdifferential of f at µ.

(b) Assume 0 ∈ ∂f(µ?), i.e., µ? minimizes f . Give an interpretation of µ?. You may
assume the values of xi are distinct and ordered, i.e., x1 < x2 < · · · < xn. Hint.
See exercise title.

1.5 Subgradient optimality conditions for nondifferentiable inequality constrained optimiza-
tion. Consider the problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

with variable x ∈ Rn. We do not assume that f0, . . . , fm are convex. Suppose that x̃
and λ̃ � 0 satisfy primal feasibility,

fi(x̃) ≤ 0, i = 1, . . . ,m,

dual feasibility,

0 ∈ ∂f0(x̃) +
m∑
i=1

λ̃i∂fi(x̃),

and the complementarity condition

λ̃ifi(x̃) = 0, i = 1, . . . ,m.

Show that x̃ is optimal, using only a simple argument, and definition of subgradient.
Recall that we do not assume the functions f0, . . . , fm are convex.

1.6 Optimality conditions for `1-regularized minimization. Consider the problem of mini-
mizing

φ(x) = f(x) + λ‖x‖1,

where f : Rn → R is convex and differentiable, and λ ≥ 0. The number λ is the
regularization parameter, and is used to control the trade-off between small f and small
‖x‖1. When `1-regularization is used as a heuristic for finding a sparse x for which f(x)
is small, λ controls (roughly) the trade-off between f(x) and the cardinality (number
of nonzero elements) of x.

Show that x = 0 is optimal for this problem (i.e., minimizes φ) if and only if ‖∇f(0)‖∞ ≤
λ. In particular, for λ ≥ λmax = ‖∇f(0)‖∞, `1 regularization yields the sparsest possi-
ble x, the zero vector.

Remark. The value λmax gives a good reference point for choosing a value of the
penalty parameter λ in `1-regularized minimization. A common choice is to start with
λ = λmax/2, and then adjust λ to achieve the desired sparsity/fit trade-off. Useful
values of λ typically range between 0.05λmax and 0.9λmax.

3

1.7 Coordinate-wise descent. In the coordinate-wise descent method for minimizing a con-
vex function f , we first minimize over x1, keeping all other variables fixed; then we
minimize over x2, keeping all other variables fixed, and so on. After minimizing over xn,
we go back to x1 and repeat the whole process, repeatedly cycling over all n variables.
(There are many obvious variations on this, such as block coordinate-wise descent and
random coordinate-wise descent.)

(a) Show that coordinate-wise descent fails for the function

f(x) = |x1 − x2|+ 0.1(x1 + x2).

(In particular, verify that the algorithm terminates after one step at the point

(x
(0)
2 , x

(0)
2), while infx f(x) = −∞.) Thus, coordinate-wise descent need not work,

for general convex functions.

(b) Now consider coordinate-wise descent for minimizing the specific function φ(x) =
f(x) + λ‖x‖1, where f is smooth and convex, and λ ≥ 0. Assuming f is strongly
convex (say) it can be shown that the iterates converge to a fixed point x̃. Show
that x̃ is optimal, i.e., minimizes φ.

Thus, coordinate-wise descent works for `1-regularized minimization of a differen-
tiable function.

(c) Work out an explicit form for coordinate-wise descent for `1-regularized least-
squares, i.e., for minimizing the function

‖Ax− b‖2
2 + λ‖x‖1.

You might find the deadzone function

ψ(u) =


u− 1 u > 1
0 |u| ≤ 1
u+ 1 u < −1

useful. Generate some data and try out the coordinate-wise descent method.
Check the result against the solution found using CVX, and produce a graph
showing convergence of your coordinate-wise method.

1.8 Regularization parameter for sparse Bayes network identification. We are given samples
y1, . . . , yN ∈ Rn from an N (0,Σ) distribution, where Σ � 0 is an unknown covariance
matrix. From these samples we will estimate the parameter Σ, using the prior knowl-
edge that Σ−1 is sparse. (The diagonals will not be zero, so this means that many
off-diagonal elements of Σ−1 are zero. Zero entries in Σ−1 can be interpreted as a
conditional independence condition, and explains the title of this problem.)

To this end, we solve the (convex) problem

maximize log detS −Tr(SY)− λ
∑

i 6=j |Sij|

4

with variable S ∈ Sn++, which is our estimate of Σ−1. Modulo a constant and scaling,
the first two terms in the objective are the log-likelihood, where matrix Y is the sample
covariance matrix

Y =
1

N

N∑
k=1

yky
T
k

(which we assume satisfies Y � 0). The last term in the objective is a sparsfiying
regularizer, with regularization parameter λ > 0. It does not penalize the diagonal
terms in S, since they cannot be zero. We let S? denote the optimal S (which is
unique, since the objective is strictly concave). It depends on Y and λ.

(a) Suppose we add the additional constraint that S must be diagonal. (In this case
S is as sparse as it can possibly be: All its off-diagonal entries are zero.) Find a
simple expression for Sdiag, the optimal S in this case.

(b) Show that there is a (finite) value λdiag, such that S? = Sdiag if and only if
λ ≥ λdiag. Find a simple expression for λdiag in terms of Y .

Hint. See page 641 of the textbook for the derivative of log detS.

Remark. It is very useful in practice to know the value λdiag. Useful values of the
regularization parameter λ are almost always in the range [0.05, .95]λdiag.

1.9 Conjugacy and subgradients. In this question, we show how conjugate functions are
related to subgradients. Let f be convex and recall that its conjugate is f ∗(v) =
supx{vTx− f(x)}. Prove the following:

(a) For any v we have vTx ≤ f(x)+f ∗(v) (this is sometimes called Young’s inequality).

(b) We have gTx = f(x) + f ∗(g) if and only if g ∈ ∂f(x).

Note that (you do not need to prove this) if f is closed, so that f(x) = f ∗∗(x), result
(b) implies the duality relationship that g ∈ ∂f(x) if and only if x ∈ ∂f ∗(g) if and only
if gTx = f(x) + f ∗(g).

1.10 If a function has a unique subgradient at a given point, is the function differentiable
at that point? Provide a proof or a counter example.

1.11 In the following, determine the subdifferential set for the given functions at the specified
points:

(a) f(x1, x2, x3) = max{|x1|, |x2|, |x3|} at (x1, x2, x3) = (0, 0, 0).

(b) f(x) = e|x| at x = 0 (x is a scalar).

(c) f(x1, x2) = max{x1 + x2 − 1, x1 − x2 + 1} at (x1, x2) = (1, 1).

1.12 Consider the function f : R2 → R given by

f(x1, x2) = max

{
1

2
‖x‖2 − x1,

1

2
‖x‖2 + x1

}
5

(a) Determine the subdifferential set ∂f(x) for x ∈ R2.

(b) Are the subgradients uniformly bounded over x ∈ R2? Would your answer change
if x is restricted to lie in the set X = {x ∈ R2 | ‖x‖ ≤ 1}? If yes, provide a bound
for the subgradient norms.

1.13 Does autodifferentiation work correctly? Calculate a ‘gradient’ of the following func-
tions using an automatic differentation (autodiff) method at the specified points. Check
whether the result is a valid subgradient and give an explanation if there is a mismatch.
You may use any programming language and any autodiff package.

(a) f(x) = max(x, 0)2 at x = 0

(b) f(x) = min(x, 0) + max(x, 0) at x = 0

(c) f(x) = min(x, 0) + max(x, 0) at x = 10−50

(d) f(x) = min(x, 0) + max(x, 0) at x = 10−30

(e) f(x) = min(|x|, x) at x = 0

(f) f(x) = min(x, |x|) at x = 0

Hint: You can use Pytorch and Google Colab for autodiff (recommended)1. Please see
the following example which calculates the gradient of ReLU(x) = max(x, 0) at x = 0.

import torch

x = torch.tensor([0.], requires_grad=True)

zero = torch.tensor([0.])

f = torch.max(x,zero)

f.backward()

print(x.grad) #prints the gradient of f with respect to x at its current value

1.14 Computing gradients of expectations. Suppose z ∈ R is a random variable with distri-
bution P and let F : Rd×1 be a collection of random functions indexed by z. Define the
expected function to be f(x) := Ez[F (x, z)]. We assume that x 7→ F (x, z) is convex
for all z and that Ez[|F (x, z)|] < ∞ for all x. Additionally, f and x 7→ F (x, z) are
differentiable in x.

(a) (3 points) Verify that f is also a convex function.

(b) (3 points) Use the subgradient inequality to show that ∇xf(x) = Ez[∇xF (x, z)].
That is, we can exchange the order of differentiation and integration for convex
functions.

1You can run your python script online on a Google Colaboratory notebook easily:
colab.research.google.com

6

http://colab.research.google.com

(c) (2 points extra credit) Assume n = 1. Abusing notation, the derivative of f is

∇xf(x) = lim
t→0

f(x+ t)− f(x)

t
.

Part (b) shows that we can exchange the limit in this equation with the expecta-
tion operator when f is convex (convince yourself that this is true). However, the
order of limits and integrals may not be exchanged in general.

Let {Yk} be a sequence of random variables with limit Ȳ . The Dominated Con-
vergence Theorem2 says that

lim
k→∞

E[Yk] = E[Ȳ]

if |Yk| ≤ |Z| for all k and a random variable Z satisfying E[|Z|] < ∞. Show
that Part (b) is consistent with measure-theoretic probability by proving that
∇xf(x) = Ez[∇xF (x, z)] using the Dominated Convergence Theorem.

(d) (1 point extra credit) Now suppose that n > 1. Use Part (c) to prove ∇xf(x) =
Ez[∇xF (x, z)] by restricting f to a scalar function along ei, a vector from the
cardinal basis.

2See, for example, Cinlar, 2011 [?].

7

2 Generalized subgradients

2.1 Non-convex non-differentiable functions, Clarke subdifferentials and Neural Networks.
Let f : Rn → R be a given function that we do not assume to be convex nor to be
differentiable (e.g., a deep neural network with ReLU activation functions), so that the
subdifferential ∂f(x) = {g ∈ Rn | f(y) ≥ f(x) + g>(y − x) ∀y} is possibly an empty
set. In this question, we explore generalized subdifferentials, or Clarke subdifferentials,
as we have seen on page 11 of the lecture notes.

Let D ⊂ Rn be the set of points at which f is differentiable. We assume that D has
(Lebesgue) measure 1, meaning that f is differentiable almost everywhere. The Clarke
subdifferential of f at x is then defined as

∂Cf(x) = Co
{

lim
k→∞
∇f(xk) | xk → x, xk ∈ D

}
.

The goal of this exercise is to characterize some basic properties of Clarke subdifferen-
tials, relate ∂Cf(x) to ∂f(x) and study some implications of the condition 0 ∈ ∂Cf(x),
which is necessary and sufficient for global optimality in the convex case.

We make the following technical assumption: we assume that f is locally Lipschitz,
i.e., for any x ∈ Rn, there exists η > 0 and Lx > 0 such that |f(y)−f(z)| ≤ Lx‖y−z‖2

for any y, z such that ‖x − y‖2, ‖x − z‖2 ≤ η. Then, it follows that the function f is
differentiable almost everywhere with respect to the Lebesgue measure (this result is
sometimes referred to as Rademacher’s theorem [?]).

Prove the following:

(a) If f is a continuously differentiable function then ∂Cf(x) = {∇f(x)}.
(b) If f is convex then ∂Cf(x) ⊆ ∂f(x). Show that equality actually holds, i.e.,

∂Cf(x) = ∂f(x). Hint: Suppose by contradiction that there exists g ∈ ∂f(x) such
that g 6∈ ∂Cf(x). Set h(x) = f(x) − gTx. Show that 0 ∈ ∂h(x) and 0 6∈ ∂Ch(x).
Use the hyperplane separation theorem to conclude.

We say that x is Clarke stationary if 0 ∈ ∂Cf(x). If f is convex, then, from (b), we
know that x is a global minimizer of f . For a non-convex function f , this property
does not extend in general as we explore next.

(c) Suppose that x is a local minimum (resp. maximum) of f , i.e., there exists a
radius η > 0 such that f(y) ≥ f(x) (resp. f(y) ≤ f(x)) for any y such that
‖y − x‖2 ≤ η. Show that x is Clarke stationary. Hint: suppose by contradiction
that 0 6∈ ∂Cf(x) and conclude by using the hyperplane separating theorem with the
convex sets ∂Cf(x) and {0}.

(d) Suppose that infx f(x) > −∞ and that infx f(x) is attained. Show that if x is the
unique Clarke stationary point of f , then x is the unique global minimizer of f .

8

https://web.stanford.edu/class/ee364b/lectures/subgradients_notes.pdf#page=11

Finally, we study two examples of non-convex non-differentiable functions: a two-
dimensional input function which has a unique Clarke stationary point that is the
global minimizer, and, a neural network training loss which has a spurious Clarke
stationary point at (0, . . . , 0).

(e) Consider the function with two-dimensional inputs f(x1, x2) = 10 |x2− x2
1|+ (1−

x1)2. Show that the unique Clarke stationary point of f is (x1, x2) = (1, 1) and
that it is the unique global minimizer of f .

(f) Consider a supervised learning setting with a neural network parameterization:
let X ∈ Rn×d be a given data matrix and y ∈ Rn be a vector of real-valued obser-
vations. For the neural network parameters u1, . . . , um ∈ Rd and α1, . . . , αm ∈ R,
consider the loss function

f(u1, . . . , um, α1, . . . , αm) = ‖y −
m∑
i=1

σ(Xui)αi‖2
2 ,

where we have introduced the component-wise ReLU activation function σ defined
as σ(z) = (max{z1, 0}, . . . ,max{zn, 0}) ∈ Rn for z = (z1, . . . , zn) ∈ Rn. Show
that 0 ∈ ∂fC(0, . . . , 0, 0, . . . , 0).

9

3 Subgradient methods

3.1 Minimizing a quadratic. Consider the subgradient method with constant step size α,
used to minimize the quadratic function f(x) = (1/2)xTPx + qTx, where P ∈ Sn++.
For which values of α do we have x(k) → x?, for any x(1)? What value of α gives fastest
asymptotic convergence?

3.2 A variation on alternating projections. We consider the problem of finding a point in
the intersection C 6= ∅ of convex sets C1, . . . , Cm ⊆ Rn. To do this, we use alternating
projections to find a point in the intersection of the two sets

C1 × · · · × Cm ⊆ Rmn

and
{(z1, . . . , zm) ∈ Rmn | z1 = · · · = zm} ⊆ Rmn.

Show that alternating projections on these two sets is equivalent to the following itera-
tion: project the current point in Rn onto each convex set (independently in parallel),
and then average the results. Draw a simple picture to illustrate this.

3.3 Matrix norm approximation. We consider the problem of approximating a given matrix
B ∈ Rp×q as a linear combination of some other given matrices Ai ∈ Rp×q, i = 1, . . . , n,
as measured by the matrix norm (maximum singular value):

minimize ‖x1A1 + · · ·+ xnAn −B‖.

(a) Explain how to find a subgradient of the objective function at x.

(b) Generate a random instance of the problem with n = 5, p = 3, q = 6. Use
CVX, CVXPY, or Convex.jl to find the optimal value f ? of the problem. Use a
subgradient method to solve the problem, starting from x = 0. Plot f − f ? versus
iteration. Experiment with several step size sequences.

3.4 Asynchronous alternating projections. We consider the problem of finding a sequence
of points that approach the intersection C 6= ∅ of some convex sets C1, . . . , Cm. In the
alternating projections method described in lecture, the current point is projected onto
the farthest set. Now consider an algorithm where, at every step, the current point is
projected onto any set not containing the point.

Give a simple example showing that such an algorithm can fail, i.e., we can have
dist(x(k), C) 6→ 0 as k →∞.

Now suppose that an additional hypothesis holds: there is an N such that, for each
i = 1, . . . ,m, and each k, we have x(j) ∈ Ci for some j ∈ {k + 1, . . . , k +N}. In other
words: in each block of N successive iterates of the algorithm, the iterates visit each
of the sets. This would occur, for example, if in any block of N successive iterates,
we project on each set at least once. As an example, we can cycle through the sets in

10

round-robin fashion, projecting at step k onto Ci with i = kmodm + 1. (When the
point is in the set we are to project onto, nothing happens, of course.)

When this additional hypothesis holds, we have dist(x(k), C)→ 0 as k →∞. Roughly
speaking, this means we can choose projections in any order, provided each set is taken
into account every so often.

We give the general outline of the proof below; you fill in all details. Let’s suppose the
additional hypothesis holds, and let x? be any point in the intersection C = ∩mi=1Ci.

(a) Show that
‖x(k+1) − x?‖2 ≤ ‖x(k) − x?‖2 − ‖x(k+1) − x(k)‖2.

This shows that x(k+1) is closer to x? than x(k) is. Two more conclusions (needed
later): The sequence x(k) is bounded, and dist(x(k), C) is decreasing.

(b) Iteratively apply the inequality above to show that

∞∑
i=1

‖x(i+1) − x(i)‖2 ≤ ‖x(1) − x?‖2,

i.e., the distances of the projections carried out are square-summable. This implies
that they converge to zero.

(c) Show that dist(x(k), Ci) → 0 as k → ∞. To do this, let ε > 0. Pick M large
enough that ‖x(k+1) − x(k)‖ ≤ ε/N for all k ≥ M . Then for all k ≥ M we have
‖x(k+j) − x(k)‖ ≤ jε/N . Since we are guaranteed (by our hypothesis) that one of
x(k+1), . . . , x(k+N) is in Ci, we have dist(x(k), Ci) ≤ ε. Since ε was arbitrary, we
conclude dist(x(k), Ci)→ 0 as k →∞.

(d) It remains to show that dist(x(k), C) → 0 as k → ∞. Since the sequence x(k) is
bounded, it has an accumulation point x̃. Let’s take a subsequence k1 < k2 < · · ·
of indices for which x(kj) converges to x̃ as j →∞. Since dist(x(kj), Ci) converges
to zero, we conclude that dist(x̃, Ci) = 0, and therefore (since Ci is closed) x̃ ∈ Ci.
So we’ve shown x̃ ∈ ∩i=1,...,mCi = C.
We just showed that along a subsequence of x(k), the distance to C converges to
zero. But dist(x(k), C) is decreasing, so we conclude that dist(x(k), C)→ 0.

3.5 Alternating projections to solve linear equations. We can solve a set of linear equations
expressed as

Aix = bi, i = 1, . . . ,m,

where Ai ∈ Rmi×n are fat and full rank, using alternating projections on the sets

Ci = {z | Aiz = bi}, i = 1, . . . ,m.

Assuming that the set of equations has solution set C 6= ∅, we have dist(x(k), C) → 0
as k →∞.

11

In view of exercise (3.4), the projections can be carried out cyclically, or asynchronously,
provided we project onto each set every so often. As an alternative, we could project
the current point onto all the sets, and form our next iterate as the average of these
projected points, as in exercise (3.2).

Consider the case mi = 1 and m = n (i.e., we have n scalar equations), and assume
there is a unique solution x? of the equations. Work out an explicit formula for the
update, and show that the error x(k) − x? satisfies a (time-varying) linear dynamical
system.

3.6 Step sizes that guarantee moving closer to the optimal set. Consider the subgradient
method iteration x+ = x− αg, where g ∈ ∂f(x). Show that if α < 2(f(x)− f ?)/‖g‖2

2

(which is twice Polyak’s optimal step size value) we have

‖x+ − x?‖2 < ‖x− x?‖2,

for any optimal point x?. This implies that dist(x+, X?) < dist(x,X?). (Methods
in which successive iterates move closer to the optimal set are called Féjer monotone.
Thus, the subgradient method, with Polyak’s optimal step size, is Féjer monotone.)

3.7 Subgradient method for inequality form SDP. Describe how to implement a subgradient
method to solve the inequality form SDP

minimize cTx
subject to x1A1 + · · ·+ xnAn � B,

with variable x ∈ Rn, and problem data c ∈ Rn, A1, . . . , An ∈ Sm, B ∈ Sm.

Generate a small instance of the problem (say, with n = 4 and m = 10) and solve it
using your subgradient method. Check your solution using CVX.

3.8 Alternating projections for LP feasibility. We consider the problem of finding a point
x ∈ Rn that satisfies Ax = b, x � 0, where A ∈ Rm×n, with m < n.

(a) Work out alternating projections for this problem. (In other words, explain how
to compute (Euclidean) projections onto {x | Ax = b} and Rn

+.)

(b) Implement your method, and try it on one or more problem instances with m =
500, n = 2000. With x(k) denoting the iterate after projection onto Rn

+, plot
‖Ax(k) − b‖2, the residual of the equality constraint. (This should converge to
zero; you can terminate when this norm is smaller than 10−5.)

Here is a simple way to generate data which is feasible. First generate a random
A, and a random z with positive entries. Then set b = Az. (Of course, you cannot
use z in your alternating projections method; you must start from some obvious
point, such as 0.)

Warning. When A is a fat matrix, the Matlab command A\b does not do what
you might expect, i.e., compute a least-norm solution of Ax = b.

12

(c) Factorization caching is a general technique for speeding up some repeated cal-
culations, such as projection onto an affine set. Assuming A is dense, the cost of
computing the projection of a point onto the affine set {x | Ax = b} is O(m2n)
flops. (See Appendix C in Convex Optimization.) By saving some of the matri-
ces involved in this computation, such as a Cholesky factorization (or even more
directly, the inverse) of AAT , subsequent projections can be carried out at a cost
of O(mn) flops, i.e., m times faster. (There are several other ways to get this
speedup, by saving other matrices.) Effectively, this makes each subgradient step
(after the first one) a factor m times cheaper. Explain how to do this, and im-
plement a caching scheme in your code. Verify that you obtain a speedup. (You
may have to try your code on a larger problem instance.)

(d) Over-projection. A general method that can speed up alternating projections
is to over-project, which means replacing the simple projection x+ = P (x) with
x+ = x+γ(P (x)−x), where γ ∈ [1, 2). (When γ = 1, this reduces to standard pro-
jection.) It is not hard to show that alternating projections, with over-projection,
converges to a point in the intersection of the sets.

Implement over-projection and experiment with the over-projection factor γ, ob-
serving the effect on the number of iterations required for convergence.

3.9 Subgradient method for total variation in-painting. A grayscale image is represented
as an m× n matrix of intensities Uorig (typically between the values 0 and 255). You
are given the values Uorig

ij , for (i, j) ∈ K, where K ⊂ {1, . . . ,m} × {1, . . . , n} is the set
of indices corresponding to known pixel values. Your job is to in-paint the image by
guessing the missing pixel values, i.e., those with indices not in K. The reconstructed
image will be represented by U ∈ Rm×n, where U matches the known pixels, i.e.,
Uij = Uorig

ij for (i, j) ∈ K.

The reconstruction U is found by minimizing the total variation of U , subject to match-
ing the known pixel values. We will use the `2 total variation, defined as

tv(U) =
m−1∑
i=1

n−1∑
j=1

∥∥∥∥[Ui+1,j − Ui,j
Ui,j+1 − Ui,j

]∥∥∥∥
2

.

Note that the norm of the discretized gradient is not squared.

(a) Explain how to find a subgradient G ∈ ∂ tv(U). It is sufficient to give a formula
for Gij.

(b) Implement a projected subgradient method for minimizing tv(U) subject to Uij =
Uorig
ij for (i, j) ∈ K.

Use it to solve the problem instance given in subgrad_tv_inpaint_data.m. You
will also need tv_l2_subgrad.m, lena512.bmp, and lena512_corrupted.bmp.
Show the original image, the corrupted image, and the in-painted image. Plot
tv
(
U (k)

)
(U (k) is U in the kth iteration) versus k.

13

The file subgrad_tv_inpaint_data.m defines m, n, and matrices Uorig, Ucorrupt,
and Known. The matrix Ucorrupt is Uorig with the unknown pixels whited out.
The matrix Known is m× n, with (i, j) entry one if (i, j) ∈ K and zero otherwise.
The file also includes code to display Uorig and Ucorrupt as images.

Writing matlab code that operates quickly on large image matrices is tricky, so we
have provided a function tv_l2_subgrad.m that computes tv(U) andG ∈ ∂ tv(U)
given U . tv_l2_subgrad.m uses the norms function from CVX, so you will need
CVX installed. A simple (and fast) way to set the known entries of a matrix U to
their known values is U(Known == 1) = Uorig(Known == 1).

You may need to try several step length sequences to get fast enough convergence.
We obtained good results with step sizes like αk = 1000/k and αk = 50/

√
k, but

feel free to experiment with others. Do not hesitate to run the algorithm for 1000
or more iterations.

Once it’s working, you might like to create an animated GIF that shows algorithm
progress, say, displaying U every 50 iterations. We used the function
imwrite(U_record,’inpaint.gif’,’DelayTime’,1,’LoopCount’,inf). Here
U_record is an m × n × 1 × r matrix, where U_record(:, :, 1, i) is the ith
intermediate value of U out of the r stored in U_record. imwrite will project
invalid intensity values into the range [0, 255] (with a warning).

3.10 Strong convexity and smoothness. We say that a function f is λ-strongly convex over
the set C if dom f ⊃ C and for all x, y ∈ C and g ∈ ∂f(x),

f(y) ≥ f(x) + gT (y − x) +
λ

2
‖x− y‖2

2 .

That is, the function grows at least quadratically everywhere over C. In a duality
relationship you explore in this problem, we say that a function h has L-Lipschitz
gradient over the set C if for all x, y ∈ C

‖∇h(x)−∇h(y)‖2 ≤ L ‖x− y‖2 .

By a Taylor expansion, this is equivalent to

h(y) ≤ h(x) +∇h(x)T (y − x) +
L

2
‖x− y‖2

2 .

(You do not need to prove this equivalence.)

Hint: For this question, use the results of question 1.9.

(a) Let f be λ-strongly convex over a closed convex set C. Letting IC(x) = 0 for
x ∈ C and +∞ otherwise, show that the conjugate (f + IC)∗ is differentiable and
has (1/λ)-Lipschitz continuous gradient.

(b) Show that (if f is λ-strongly convex)

∇(f + IC)∗(s) = argmin
x∈C

{
−sTx+ f(x)

}
.

14

(c) Let f have L-Lipschitz gradient. Show that f ∗ is (1/L)-strongly convex.

As an aside, part (b) shows that the solutions to strongly convex problems are Lipschitz
continuous under perturbations of the objective.

3.11 More general dualities of strong convexity and smoothness. This question generalizes
the results of Ex. 3.10 to non-Euclidean norms and more general geometries. Let ‖·‖
be a norm on a set C ⊂ Rn. A function f is λ-strongly convex over the set C with
respect to the norm ‖·‖ if dom f ⊃ C and for all x, y ∈ C and g ∈ ∂f(x),

f(y) ≥ f(x) + gT (y − x) +
λ

2
‖x− y‖2 .

Let ‖·‖∗ be the dual norm for ‖·‖, that is, ‖z‖∗ = supx:‖x‖≤1 x
T z. We say that a function

h has L-Lipschitz gradient over the set C with respect to the norm ‖·‖ if for all x, y ∈ C

‖∇h(x)−∇h(y)‖∗ ≤ L ‖x− y‖ .

Hint: For this question, use the results of question 1.9.

(a) Let f be λ-strongly convex over a closed convex set C with respect to the norm
‖·‖. Letting IC(x) = 0 for x ∈ C and +∞ otherwise, show that the conjugate
(f+IC)∗ is differentiable and has (1/λ)-Lipschitz continuous gradient with respect
to the norm ‖·‖∗.

(b) Let f have L-Lipschitz gradient with respect to the norm ‖·‖. Show that f ∗ is
(1/L)-strongly convex with respect to the dual norm ‖·‖∗.

3.12 Mirror descent and adaptive stepsizes. The mirror descent method iterates

gk ∈ ∂f(xk), xk+1 = argmin
x∈C

{
〈gk, x〉+

1

αk
Dh(x, x

k)

}
,

where f : Rn → R is a convex function. Here Dh(x, y) = h(x)− h(y)−∇h(y)T (x− y)
is the Bregman divergence based on the function h, where we assume that h is strongly
convex with respect to the norm ‖·‖ with dual norm ‖·‖∗. Mirror descent satisfies the
following convergence bound: for any x? ∈ C, if Dh(x

?, x) ≤ 1
2
R2 for all x ∈ C, then

for every non-increasing stepsize sequence α1 ≥ α2 ≥ · · · ≥ αk,

k∑
i=1

[
f(xi)− f(x?)

]
≤ 1

2αk
R2 +

k∑
i=1

αi
2
‖gi‖2

∗.

We investigate dynamic choices of the stepsize αk to get reasonable convergence be-
havior.

15

(a) Show that for a fixed stepsize α,

inf
α≥0

{
1

2α
R2 +

k∑
i=1

α

2
‖gi‖2

∗

}
= R

(k∑
i=1

‖gi‖2
∗

) 1
2

.

(b) Instead of using a fixed stepsize, suppose at each step k we choose αk to minimize
the current bound:

αk = argmin
α≥0

{
1

2α
R2 +

k∑
i=1

α

2
‖gi‖2

∗

}
.

Show that with this stepsize sequence, the mirror descent iterates satisfy

k∑
i=1

[
f(xi)− f(x?)

]
≤ 3

2
R

(k∑
i=1

∥∥gi∥∥2

∗

) 1
2

.

(c) Suppose that ‖gi‖∗ ≤ G for all i. What convergence rate on f(x̄k) − f(x?) does

this guarantee for the choice x̄k = 1
k

∑k
i=1 x

i?

3.13 High dimensional problems, mirror descent, and gradient descent. We consider using
mirror descent versus projected subgradient descent to solve the non-smooth minimiza-
tion problem

minimize f(x) = max
i∈{1,...,m}

{aTi x+ bi} subject to x ∈ ∆n = {z ∈ Rn
+ | zT1 = 1}.

Implement mirror descent with the choice h(x) =
∑n

i=1 xi log xi and projected subgra-
dient descent for this problem. (You will need to project onto the simplex efficiently
for this to be a reasonable method at all.) You will compare the performance of these
two methods.

Generate random problem data for the above objective with ai drawn as i.i.d.N(0, In×n)
(multivariate normals) and bi drawn i.i.d. N(0, 1), where n = 500 and m = 50. Solve
the problem using CVX (or Convex.jl or CVXPY), then run mirror descent and
projected gradient descent on the same data for 100 iterations. Run each method with
constant stepsizes α ∈ {2−12, 2−11, . . . , 26, 27}. Repeat this 25 times, then plot the
average optimality gap f(xk)− f(x?) or fkbest − f(x?) as a function of iteration for the
best stepsize (chosen by smallest optimality gaps) for each method. Which method
gives the best performance?

3.14 Subgradient methods for Lasso. Consider the optimization problem

minimize f(x) := 1
2
‖Ax− b‖2

2 + λ‖x‖1 ,

with variables x ∈ Rn and problem data A ∈ Rm×n, b ∈ Rm and λ > 0. This model
is known as Lasso, or Least Squares with `1 regularization, which encourages sparsity
in the solution via the non-smooth penalty ‖x‖1 :=

∑n
j=1 |xj|. In this problem, we will

explore various subgradient methods for fitting this model.

16

(a) (1 points) Derive the subdifferential ∂f(x) of the objective.

(b) (1 points) Find the update rule of the subgradient method and state the compu-
tational complexity of applying one update using big O notation in terms of the
dimensions.

(c) (5 points) Let n = 1000, m = 200 and λ = 0.01. Generate a random matrix
A ∈ Rm×n with independent Gaussian entries with mean 0 and variance 1/m, and

a fixed vector x∗ =
[

1, ..., 1︸ ︷︷ ︸
k times

, 0, ..., 0︸ ︷︷ ︸
n−k times

]T ∈ Rn. Let k = 5 and then set b = Ax∗.

Implement the subgradient method to minimize f(x), initialized at the all-zeros
vector. Try different step size rules, including constant step size, constant step
length, 1/

√
k, 1/k, Polyak’s step length with estimated objective value as shown

in lecture slides. Plot objective value versus iteration curves of different step size
rules on the same figure.

(d) (3 points) Repeat part (c) using a heavy ball term, βk(x
k − xk−1), added to the

subgradient, as described on page 25 of lecture slides. Try different step size rules
as in part (c) and tune the heavy ball parameter βk = β for faster convergence.

3.15 Line-search for Non-smooth Functions. In this question, we will examine the feasibility
of line-search for choosing the step-size in subgradient descent. Let f : Rn → R be a
convex function. At iteration k of subgradient descent, the Armijo line-search selects
the largest step-size αk > 0 which satisfies

f(xk − αkgk) ≤ f(xk)− cαk‖gk‖2
2, (1)

where gk ∈ ∂f(xk) and c ∈ (0, 1) is a relaxation parameter. In practice, this can be
achieved by reducing the step-size as αk ← βαk for some β ∈ (0, 1) until (1) is satisfied.
This is called backtracking.

We will analyze the performance of this backtracking line-search procedure for the
following piece-wise linear function.

f(x) =


−2x if x ≤ 0

−1
2
x if x ∈ (0, 4)

x− 6 if x ≥ 4.

(a) Plot f over the domain [−2, 6] in your favorite plotting software and report the
figure. Is f a convex function? Report the minimizer(s) of f .

(b) Since f is piece-wise linear with a finite number of pieces, its subdifferential takes
only a finite number of distinct set values. Report each unique subdifferential set
of f and the interval over which it is valid.

(c) Suppose we attempt to minimize f using subgradient descent with the Armijo
line-search. In particular, suppose that we choose a random subgradient at each
iteration and backtrack on αk until (1) holds.

17

https://web.stanford.edu/class/ee364b/lectures/subgrad_method_slides.pdf#page=2
https://web.stanford.edu/class/ee364b/lectures/subgrad_method_slides.pdf#page=25

Suppose c > 0.25 and show that there exists an initial point x0 ∈ [−2, 6], x0 6∈
argminx f(x) and subgradient g0 ∈ ∂f(x0) such that no step-size α0 > 0 exists for
which the Armijo condition holds.

(d) Now let c ∈ (0, 1). Modify f using knowledge of c to show that there exists a
function for which the line-search fails analogously to part (c). As in part (c),
enforce x0 6∈ argminx f(x).

3.16 Finding a point in the intersection of convex sets. Let Σ be an n× n diagonal matrix
with diagonal entries σ1 ≥ · · · ≥ σn > 0, and y a given vector in Rn. Consider the
compact convex sets E = {z ∈ Rn | ‖Σ 1

2 z‖2 ≤ 1} and B = {z ∈ Rn | ‖z − y‖∞ ≤ 1}.

(a) (2 points) Formulate an optimization problem and propose an algorithm in order
to find a point x ∈ E∩B. You can assume that E∩B is not empty. Your algorithm
must be provably converging (although you do not need to prove it and you can
simply refer to the lecture slides).

(b) (2 points) Implement your algorithm with the following data: n = 2, y = (7/4, 0),
σ1 = 1, σ2 = 0.5 and x = (0, 4). Plot the objective value of your optimization
problem versus the number of iterations.

3.17 Constrained subgradient method. Consider the optimization problem

minimize{xj}Jj=1
f(x1, . . . , xJ) := 1

2
‖b−

∑J
j=1Ajxj‖2

2 + λ ·
∑J

j=1 ‖xj‖2 ,

s.t. Ajxj ≥ 0, ∀j ∈ {1, 2, . . . , J}

with variable x1, . . . , xJ ∈ Rn and problem data A1, . . . , AJ ∈ Rm×n, b ∈ Rm and
λ > 0. We will apply the subgradient method for constrained optimization given on
page 11 of the lecture slides.

Let J = 3, n = 100, m = 10, and λ = .5. Generate random matrices A1, . . . , AJ ∈
Rm×n with independent uniformly distributed entries in the interval

[
0, 1√

m

)
and,

random vectors x1, . . . , xJ ∈ Rn with independent uniformly distributed entries in the

interval
[
0, 1√

n

)
, then set b =

∑J
j=1Ajxj. Plot convergence in terms of the objective

f(x
(k)
1 , . . . , x

(k)
J). Try different step length schedules. Also, plot the maximal violation

for the linear constraints at each step.

3.18 Recovering Discrete Signals via Convex Optimization. Suppose that x is an n dimen-
sional signal taking values only in {−1,+1}, i.e., x ∈ {−1,+1}n, and we have obser-
vations y = Ax. Here, A ∈ Rm×n is a matrix whose entries are known. This setting
is frequently encountered in wireless communication systems. Typically, the signal x
carries digital information and A models the propagation of the signal over a wireless
channel. You will try recovering the signal by finding a point x̂ that satisfies ‖x̂‖∞ ≤ 1
and Ax̂ = y. Generate a random matrix A with independent standard Gaussian entries
and random signal x ∈ {−1,+1}n with independent uniformly distributed values in
{−1,+1} and let y = Ax.

18

http://web.stanford.edu/class/ee364b/lectures/constr_subgrad_slides.pdf

(a) Formulate an optimization problem and propose an algorithm to recover a signal
from measurements y = Ax obeying the constraint ‖x‖∞ ≤ 1.

(b) Plot the convergence of the algorithm in part (a) in terms of the Euclidean distance
‖x̂− x‖2 for n = 100 and m ∈ 50, 80, 90. Plot the original and recovered signals.

19

4 Stochastic subgradient methods

4.1 Minimizing expected maximum violation. We consider the problem of minimizing the
expected maximum violation of a set of linear constraints subject to a norm bound on
the variable,

minimize E max(b− Ax)+

subject to ‖x‖∞ ≤ 1,

where the data A ∈ Rm×n and b ∈ Rm are random.

We consider a specific problem instance with m = 3 and n = 3. The entries of A and
b vary uniformly (and independently) ± 0.1 around their expected values,

EA =

 1 0 0
1 1/2 0
1 1 1/2

 , E b =

 9/10
1

9/10

 .
(a) Solution via stochastic subgradient. Use a stochastic subgradient method with

step size 1/k to compute a solution xstoch, starting from x = 0, with M = 1
subgradient sample per iteration. Run the algorithm for 5000 iterations. Estimate
the objective value obtained by xstoch using Monte Carlo, with M = 1000 samples.
Plot the distribution of max(b−Axstoch) from these samples. (In this plot, points
to the left of 0 correspond to no violation of the inequalities.)

(b) Maximum margin heuristic. The heuristic xmm is obtained by maximizing the
margin in the inequalities, with the coefficients set to their expected values:

minimize max(E b− EAx)
subject to ‖x‖∞ ≤ 1.

Use Monte Carlo with M = 1000 samples to estimate the objective value (for the
original problem) obtained by xmm, and plot the distribution of max(b− Axmm).

(c) Direct solution of sampled problem. Generate M = 100 samples of A and b, and
solve the problem

minimize (1/M)
∑M

i=1 max(bi − Aix)+

subject to ‖x‖∞ ≤ 1.

The solution will be denoted xds. Use Monte Carlo with M = 1000 samples to
estimate the objective value (for the original problem) obtained by xds, and plot
the distribution of max(b− Axds).

Hints.

• Use x = max(min(x,1), -1) to project onto the `∞ norm ball.

• Use the CVX function pos() to get the positive part function ()+.

20

• The clearest code for carrying out Monte Carlo analysis uses a for loop. In
Matlab for loops can be very slow, since they are interpreted. Our for-loop
implementation of the solution to this problem isn’t too slow, but if you find
Monte Carlo runs slow on your machine, you can use the loop-free method shown
below, to find the empirical distribution of max(b− Ax).

% loop-free Monte Carlo with 1000 samples of data A and b

M = 1000; noise = 0.1;

Amtx = repmat(Abar,M,1) + 2*noise*rand(M*m,n) - noise;

bmtx = repmat(bbar,M,1) + 2*noise*rand(M*m,1) - noise;

% evaluate max(b - Ax) for 1000 samples

fvals_stoch = max(reshape(bmtx - Amtx*x_stoch,m,M));

4.2 Support vector machine training via stochastic subgradient. We suppose that feature-
label pairs, (x, y) ∈ Rn × {−1, 1}, are generated from some distribution. We seek a
linear classifier or predictor, of the form ŷ = sign(wTx), where w ∈ Rn is the weight
vector. (We can add an entry to x that is always 1 to get an affine classifier.) Our
classifier is correct when ywTx > 0; since this expression is homogeneous in w, we can
write this as ywTx ≥ 1. Thus, our goal is to choose w so that 1− ywTx ≤ 0 with high
probability.

A support vector machine (SVM) chooses wsvm as the minimizer of

f(w) = E
(
1− ywTx

)
+

+ (ρ/2)‖w‖2
2,

where ρ > 0 is a parameter. The first term is the average loss, and the second term is a
quadratic regularizer. Finding wsvm involves solving a stochastic optimization problem.

Explain how to (approximately) solve this stochastic optimization problem using the
stochastic subgradient method, with one sample per subgradient step. In this context,
the samples from the distribution are called data or examples, and the collection of
these is called the training data. Since this method only processes one data sample in
each step, it is called a streaming algorithm (since it does not have to store more than
one data sample in each step).

Implement the stochastic subgradient method for a problem with n = 20, and (x, y)
samples generated using

randn(’state’,0)

w_true = randn(n,1); % ’true’ weight vector

% to get each data sample use snippet below

x = randn(n,1);

y = sign(w_true’*x+0.1*randn(1));

Experiment with the choice of ρ, the step size rule, and the number of iterations to
run (but don’t be afraid to run the algorithm for 10000 steps).

21

To view the convergence, you can plot two quantities at each step: the optimality gap
f(w) − f ? and the classifier error probability Prob

(
ywTx ≤ 0

)
. To (approximately)

compute these quantities, use a Monte Carlo method, using, say, 10000 samples. (You’ll
want to compute these 10000 samples, and evaluate the Monte Carlo estimates of the
two quantities above, without using Matlab for loops. Also note that evaluation of
these two quantities will be far more costly than each step of the stochastic subgradient
method.) You can use CVX to estimate f ?.

4.3 Log-optimal portfolio optimization using return oracle. We consider the portfolio opti-
mization problem

maximize Er log(rTx)
subject to 1Tx = 1, x � 0,

with variable (portfolio weights) x ∈ Rn. The expectation is over the distribution of
the (total) return vector r ∈ Rn

++, which is a random variable. (Although not relevant
in this problem, the log-optimal portfolio maximizes the long-term growth of an initial
investment, assuming the investments are re-balanced to the log-optimal portfolio after
each investment period, and ignoring transaction costs.)

In this problem we assume that we do not know the distribution of r (other than
that we have r � 0 almost surely). However, we have access to an oracle that will
generate independent samples from the return distribution. (Although not relevant,
these samples could come from historical data, or stochastic simulations, or a known
or assumed distribution.)

(a) Explain how to use the (projected) stochastic subgradient method, using one
return sample for each iteration, to find (in the limit) a log-optimal portfolio.
Describe how to carry out the projection required, and how to update the portfolio
in each iteration.

(b) Implement the method and run it on the problem with n = 10 assets, with return
sample oracle in the mfile log_opt_return_sample(m). This function returns an
n×m matrix whose columns are independent return samples.

You are welcome to look inside this file to see how we are generating the sample.
The distribution is a mixture of two log-normal distributions; you can think of
one as the standard return model and the other as the return model in some
abnormal regime. However, your stochastic subgradient algorithm can only call
log_opt_return_sample(1), once per iteration; you cannot use any information
found inside the file in your implementation.

To get a Monte Carlo approximation of the objective function value, you can gen-
erate a block of, say, 105 samples (using R_emp=log_opt_return_sample(1e5),
which only needs to be done once), and then use obj_hat = mean(log(R_emp’*x))

as your estimate of the objective function. Plot the (approximate) objective value
versus iteration, as well as the best approximate objective value obtained up to

22

that iteration. (Note that evaluating the objective will require far more compu-
tation than each stochastic subgradient step.)

You may need to play around with the step size selection in your method to get
reasonable convergence. Remember that your objective value evaluation is only
an approximation.

4.4 A subgradient method using averaged gradients. An alternate method to (sub)gradient
descent for optimization is known as dual averaging, as it averages gradients (points in
the dual space). The method applies to quite general problems, and in this problem,
we show how, for any sequence of convex functions fi : Rn → R we can give bounds
on the “online regret” of

k∑
i=1

[
fi(x

i)− fi(x?)
]

over all fixed x? ∈ C, where C ⊂ Rn is closed and convex.

Let x0 ∈ C be an arbitary point and αk > 0 be a non-increasing sequence of stepsizes.
Then we iterate the following scheme:

choose gk ∈ ∂fk(xk)

update zk =
k∑
i=1

gi

solve xk+1 = argmin
x∈C

{
〈zk, x〉+

1

2αk
‖x− x0‖2

2

}
.

This method is identical to gradient descent with a fixed stepsize if we have C = Rn,
αk = α for all k. More generally, it builds a somewhat global linear approximation
to the function, which it regularizes with the squared Euclidean distance. For the
remainder of the problem, assume (without loss of generality) that 0 ∈ C and x0 = 0.

(a) Let hk(x) = 1
2αk
‖x‖2

2 and define

h∗k(z) = sup
x∈C

{
zTx− hk(x)

}
= sup

x∈C

{
zTx− 1

2αk
‖x‖2

2

}
.

Argue that h∗k is differentiable and has αk-Lipschitz gradient, so for any z1, z2 ∈ Rn

‖∇h∗k(z1)−∇h∗k(z2)‖2 ≤ αk ‖z1 − z2‖2 .

(b) Argue that ∇h∗k(−zk) = xk+1 = argminx∈C{
〈
zk, x

〉
+ 1

2αk
‖x‖2

2}.

23

(c) Let x? ∈ C be arbitrary. Provide justification for each of the lettered steps in the
chain of inequalities below.

k∑
i=1

fi(x
i)− fi(x?)

(i)

≤
k∑
i=1

〈
gi, xi − x?

〉
=

k∑
i=1

〈
gi, xi

〉
−
〈
zk, x?

〉
=

k∑
i=1

〈
gi, xi

〉
−
〈
zk, x?

〉
+

1

2αk
‖x?‖2

2 −
1

2αk
‖x?‖2

2

(ii)

≤
k∑
i=1

〈
gi, xi

〉
+ h∗k(−zk) +

1

2αk
‖x?‖2

2

(iii)

≤
k∑
i=1

〈
gi, xi

〉
+ h∗k−1(−zk) +

1

2αk
‖x?‖2

2

(iv)

≤
k∑
i=1

〈
gi, xi

〉
+ h∗k−1(−zk−1) +

〈
∇h∗k−1(−zk−1),−gk

〉
+
αk−1

2

∥∥zk−1 − zk
∥∥2

2
+

1

2αk
‖x?‖2

2

(v)
=

k−1∑
i=1

〈
gi, xi

〉
+ h∗k−1(−zk−1) +

αk−1

2

∥∥gk∥∥2

2
+

1

2αk
‖x?‖2

2 .

Hint: The following inequality, which follows from a Taylor expansion, may be
useful. If F is a function with L-Lipschitz continuous gradient, then

F (y) ≤ F (x) + 〈∇F (x), y − x〉+
L

2
‖x− y‖2

2 .

(d) Using the preceding chain of inequalities and that h∗0(0) = 0 (why), prove that for
any sequence of convex functions fi and any x? ∈ C, the dual averaging procedure
gives

k∑
i=1

[
fi(x

i)− fi(x?)
]
≤

k∑
i=1

αi−1

2

∥∥gi∥∥2

2
+

1

2αk
‖x?‖2

2 .

(e) A stochastic result. Suppose that ωi are drawn i.i.d. according to a distribution
P, and that fi(x) = F (x, ωi), where F (x, ωi) is convex in x for all ω, and let
f(x) = E[F (x, ω)]. Show that if x̄k = 1

k

∑k
i=1 xi, then

E[f(x̄k)]− f(x?) ≤ 1

2kαk
‖x?‖2 +

1

k

k∑
i=1

αi−1

2
E
[∥∥gi∥∥2

2

]
.

4.5 Dual averaging versus gradient descent. In this question, you will use dual averaging
(Ex. 4.4) and stochastic subgradient descent to solve a support vector machine problem
(see Ex. 4.2). The objective is of the form

f(x) =
1

N

N∑
i=1

max{1− aTi x, 0}.

24

We consider using the dual averaging method of Ex. 4.4 to minimize the function f
over the probability simplex in Rn, i.e. ∆n = {x ∈ Rn

+ | 1Tx = 1}. This constraint set
is a heuristic for finding a sparse solution x?, i.e. one with many zero entries.

(a) Let z be an arbitrary vector in Rn. Show how to compute the proximal operator

x(z) = argmin
x∈∆n

{
zTx+

1

2
‖x‖2

2

}
.

Equivalently, show how to (for any v ∈ Rn) compute the projection

Π∆n(v) = argmin
x∈∆n

{
‖x− v‖2

2

}
.

(b) Implement projected stochastic gradient descent and stochastic dual averaging.
That is, implement a method that at each iteration, draws a single sample of the
ai vectors, computes an associated stochastic subgradient gk, and then performs
one of the following two updates:

SGD xk+1 = argmin
x∈∆n

{∥∥x− (xk − αkgk)
∥∥2

2

}
Dual averaging xk+1 = argmin

x∈∆n

{〈
zk, x

〉
+

1

2αk
‖x‖2

2

}
,

where zk =
∑k

i=1 g
i. For stochastic gradient descent, use the stepsizes αk =

1/
√
nk, and for stochastic dual averaging use stepsizes αk = 1/

√
k.

Use the data in dual_averaging_data.jl (for julia code) or dual_averaging_data.m
(for Matlab) to generate the matrix A = [a1 · · · aN]T ∈ RN×n. Run each method
for 200 steps, and give two plots: one with the gaps f(xk)−f(x?) as a function of
iteration k for each of the methods, the other with the number of non-zero entries
in xk as a function of k. (If your projection does not produce exact zeros, truncate
any coordinates with |xj| < 10−5 to zero.) You should see that one of the two
methods results in far fewer non-zero entries than the other.

4.6 Stochastic Kaczmarz method for linear systems. Consider the Least Squares minimiza-
tion problem

minimize
1

2m

m∑
i=1

(bi − aTi x)2

︸ ︷︷ ︸
f(x)

,

subject to x ∈ Rn

where a1, ..., am are the rows of a data matrix A. We will consider the stochastic
subgradient descent iterates

xt+1 = xt − αtgt , (2)

where gt is a noisy unbiased subgradient of the objective function, i.e., E[gt|xt] ∈ ∂f(xt).

25

(a) (1 point) Let j be a random index chosen from {1, ...,m} such that for every index
i ∈ {1, ...,m} the probability that j = i is pi, i.e.,

P[j = i] = pi ,

for a given discrete probability distribution p1, ..., pm ≥ 0,
∑m

i=1 pi = 1. Show that
(aTj x−bj)

mpj
aj is an unbiased subgradient, i.e.,

E
(aTj x− bj)

mpj
aj ∈ ∂f(x) ,

where the expectation is taken over the random variable j.

(b) (1 point) Assume that b = Ax∗ for some vector x∗, i.e., x∗ ∈ arg min f(x). Define
the error vector et = xt − x∗, where xt is the subgradient descent iterate in (2).
Consider the constant step size αt = m

||A||2F
, the unbiased subgradient from part

(a) sampled i.i.d. at every iteration, and the probability distribution

pi =
||ai||22∑
k ||ak||22

=
||ai||22
||A||2F

.

Show that the error vector et obeys the time-varying linear dynamical system

et+1 = Ptet ,

where Pt is a (random) symmetric projection matrix, i.e., P T
t Pt = P 2

t = Pt obeying
EPt = I − 1

||A||2F
ATA .

(c) (1 point) Show that

E ||et+1||22 ≤
(

1− σmin(A)2

||A||2F

)
E ||et||22 ,

where σmin(A) is the smallest singular value of A. Hint: Note that E[||et+1||22|et] =
E[eTt P

T
t Ptet|et] = E[eTt Ptet|et] = eTt E[Pt]et, and

eTATAe ≥ σmin(A)2eT e

for every vector e ∈ Rn. Apply this bound recursively to obtain a bound on
E ||et||22 involving only E ||e0||22, ||A||F , σmin(A).

(d) (1 point) Assuming zero initialization, x0 = 0, how many iterations are needed
to obtain E ||xt − x∗||22 ≤ 10−5 ? Your answer should depend on ||x∗||2, ||A||F ,
σmin(A). What is the computational complexity (number of real number multi-
plications) in Big O notation ?

26

5 Localization methods

5.1 Kelley’s cutting-plane algorithm. We consider the problem of minimizing a convex
function f : Rn → R over some convex set C, assuming we can evaluate f(x) and
find a subgradient g ∈ ∂f(x) for any x. Suppose we have evaluated the function and a
subgradient at x(1), . . . , x(k). We can form the piecewise-linear approximation

f̂ (k)(x) = max
i=1,...,k

(
f(x(i)) + g(i)T (x− x(i))

)
,

which satisfies f̂ (k)(x) ≤ f(x) for all x. It follows that

L(k) = inf
x∈C

f̂ (k)(x) ≤ p?,

where p? = infx∈C f(x). Since f̂ (k+1)(x) ≥ f̂ (k)(x) for all x, we have L(k+1) ≥ L(k).

In Kelley’s cutting-plane algorithm, we set x(k+1) to be any point that minimizes f̂ (k)

over x ∈ C. The algorithm can be terminated when U (k) − L(k) ≤ ε, where U (k) =
mini=1,...,k f(x(i)).

Use Kelley’s cutting-plane algorithm to minimize the piecewise-linear function

f(x) = max
i=1,...,m

(aTi x+ bi)

that we have used for other numerical examples, with C the unit cube, i.e., C =
{x | ‖x‖∞ ≤ 1}. Generate the same data we used before using

n = 20; % number of variables

m = 100; % number of terms

randn(’state’,1);

A = randn(m,n);

b = randn(m,1);

You can start with x(1) = 0 and run the algorithm for 40 iterations. Plot f(x(k)), U (k),
L(k) and the constant p? (on the same plot) versus k.

Repeat for f(x) = ‖x − c‖2, where c is chosen from a uniform distribution over the
unit cube C. (The solution to this problem is, of course, x? = c.)

5.2 Chebyshev center cutting-plane algorithm. Use the Chebyshev center cutting-plane
algorithm to minimize the piecewise-linear function f(x) = maxi=1,...,m(aTi x + bi) that
we have used for other numerical examples, with C the unit cube, i.e., C = {x | ‖x‖∞ ≤
1}. The data that defines the particular function can be found in the Matlab directory
of the subgradient notes on the course web site. You can start with x(1) = 0 and run
the algorithm for 150 iterations. Plot f(x(k))− p? and f

(k)
best− p? (on the same log plot)

versus k.

27

5.3 A barrier cutting-plane algorithm. We consider the standard inequality constrained
convex problem,

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m.

We assume that f0 is twice differentiable, and that we can evaluate its value, gradient,
and Hessian. (It is always possible to choose f0 to be linear, so this is not a critical
assumption.) The constraint functions f1, . . . , fm, however, need not be differentiable,
but we assume we can evaluate their values, and a subgradient, at any point.

Suppose we have found the value and a subgradient of one (or possibly more) of the
constraint functions at points x(1), . . . , x(k). This gives us a polyhedral outer approxi-
mation of the feasible set, given by the associated standard deep cuts, which we express
as

gTi x ≤ hi, i = 1, . . . ,mk,

where mk is the number of inequalities in our polyhedral approximation after k steps.

Define x∗(k) as the minimizer of

(mk/α
(k))f0(x)−

mk∑
i=1

log(hi − gTi x)

(which we assume exists and is unique), where α(k) > 0 is a parameter. The point x∗(k)

can be computed using an infeasible start Newton method, starting from the previous
point x∗(k−1) (or any other point, for that matter).

(a) Show that p? ≥ f0(x∗(k)) − α(k), where p? is the optimal value of the original
problem. In particular, if x∗(k) is feasible for the original problem, it is α(k)-
suboptimal.

(b) Now we can describe the barrier cutting-plane method. At each step, we first
compute x∗(k). If x∗(k) is infeasible, we add a cut (or set of cuts) from a violated
constraint to our outer approximation polyhedron, and then increment k. If x∗(k)

is feasible, we reduce α(k) by some factor µ, typically between 2 and 10, and
recompute x∗(k) using this new value of α(k). We can (reliably) stop when x∗(k) is
feasible and α(k) ≤ ε, our required tolerance.

Apply the barrier cutting-plane method to the linear program in inequality form,

minimize cTx
subject to Ax � b,

that we used as our example for the subgradient method notes. (The data that
defines the particular problem can be found in the Matlab directory of the sub-
gradient notes on the course web site.) You can initialize the polyhedral approxi-
mation of the feasible set with the (2n) inequalities ‖x‖∞ ≤ 1. Run the algorithm
until x∗(k) is feasible and α(k) ≤ ε, with ε = 10−3. You can use parameter values

28

α(1) = 1 and µ = 5. Plot f
(k)
best − f ? and α(k) (on the same plot) versus iteration

number k. Here f
(k)
best is the best objective value encountered so far among feasible

points, and f ? is the optimal value of the original problem.

Hint. Write a function that computes x∗(k) using an infeasible start Newton
method, starting from the function acent.m, available in the Matlab directory of
the ACCPM notes on the course web site.

5.4 Minimum volume ellipsoid covering a half-ellipsoid. In this problem we derive the
update formulas used in the ellipsoid method, i.e., we will determine the minimum
volume ellipsoid that contains the intersection of the ellipsoid

E = {x ∈ Rn | (x− xc)TP−1(x− xc) ≤ 1}

and the halfspace
H = {x | gT (x− xc) ≤ 0}.

We’ll assume that n > 1, since for n = 1 the problem is easy.

(a) We first consider a special case: E is the unit ball centered at the origin (P = I,
xc = 0), and g = −e1 (e1 is the first unit vector), so E∩H = {x | xTx ≤ 1, x1 ≥ 0}.
Let

Ẽ = {x | (x− x̃c)T P̃−1(x− x̃c) ≤ 1}

denote the minimum volume ellipsoid containing E ∩H. Since E ∩H is symmetric
about the line through first unit vector e1, it is clear (and not too hard to show)
that Ẽ will have the same symmetry. This means that the matrix P̃ is diagonal, of
the form P̃ = diag(α, β, β, . . . , β), and that x̃c = γe1 (where α, β > 0 and γ ≥ 0).

So now we have only three variables to determine: α, β, and γ. Express the
volume of Ẽ in terms of these variables, and also the constraint that Ẽ ⊇ E ∩ H.
Then solve the optimization problem directly, to show that

α =
n2

(n+ 1)2
, β =

n2

n2 − 1
, γ =

1

n+ 1

(which agrees with the formulas we gave, for this special case).

Hint. To express E ∩H ⊆ Ẽ in terms of the variables, it is necessary and sufficient
for the conditions on α, β, and γ to hold on the boundary of E ∩ H, i.e., at the
points

x1 = 0, x2
2 + · · ·+ x2

n ≤ 1,

or the points
x1 ≥ 0, x2

1 + x2
2 + · · ·+ x2

n = 1.

29

(b) Now consider the general case, stated at the beginning of this problem. Show how
to reduce the general case to the special case solved in part (a).

Hint. Find an affine transformation that maps the original ellipsoid to the unit
ball, and g to −e1. Explain why minimizing the volume in these transformed
coordinates also minimizes the volume in the original coordinates.

(c) Finally, show that the volume of the ellipse Ẽ satisfies vol(Ẽ) ≤ e−
1
2n vol(E).

Hint. Compute the volume of the ellipse E as a function of the eigenvalues of P ,
then use the results of parts (a) and (b) to argue that the volume computation
can be reduced to the special case in part (a).

5.5 Finding a point in the intersection of Euclidean balls. We consider the problem of
finding a point in the intersection of m Euclidean balls in Rn, Bi = {z | ‖z−ci‖2 ≤ Ri}.
You will use the following four methods to solve the problem.

• Alternating projections.

• Parallel projections. This is the variation on alternating projections, described in
exercise 3.2, in which the next point is the average of the projection of the current
point onto each of the sets.

• Analytic center cutting-plane method (with deep cuts).

• Ellipsoid method (with deep cuts).

For the first two methods, use the starting point x(1) = 0. For ACCPM, use as initial
polyhedron the `∞-norm ball, centered at 0, of smallest radius, that encloses all the
balls. (Be sure to explain how you calculate this radius.) For the ellipsoid method, use
as initial ellipsoid the `2-norm ball, centered at 0, of smallest radius, that encloses all
the balls. (Be sure to explain how you calculate this radius.)

The data for the particular problem instance you will solve can be found on the class
website in ball_intersection_data.m.

Plot the maximum distance of the current point x(k) to the balls, versus iteration
k. (Note that the maximum distance is easily computed, and is not the same as the
distance to the intersection of the balls.) We suggest running the alternating projections
algorithms, and the ellipsoid algorithm, for 500 iterations. ACCPM should converge
much faster (in terms of iterations).

5.6 Ellipsoid method for an SDP. We consider the SDP

maximize 1Tx
subject to xi � 0, Σ− diag(x) � 0,

with variable x ∈ Rn and data Σ ∈ Sn++. The first inequality is a vector (componen-
twise) inequality, and the second inequality is a matrix inequality. (This specific SDP
arises in several applications.)

30

Explain how to use the ellipsoid method to solve this problem. Describe your choice
of initial ellipsoid and how you determine a subgradient for the objective (expressed as
−1Tx, which is to be minimized) or constraint functions (expressed as maxi(−xi) ≤ 0
and λmax(diag(x) − Σ) ≤ 0). You can describe a basic ellipsoid method; you do not
need to use a deep-cut method, or work in the epigraph.

Try out your ellipsoid method on some randomly generated data, with n ≤ 20. Use
a stopping criterion that guarantees 1% accuracy. Compare the result to the solution
found using CVX. Plot the upper and lower bounds from the ellipsoid method, versus
iteration number.

31

6 Decomposition methods

6.1 Distributed method for bi-commodity network flow problem. We consider a network
(directed graph) with n arcs and p nodes, described by the incidence matrix A ∈ Rp×n,
where

Aij =


1, if arc j enters node i
−1, if arc j leaves node i

0, otherwise.

Two commodities flow in the network. Commodity 1 has source vector s ∈ Rp, and
commodity 2 has source vector t ∈ Rp, which satisfy 1T s = 1T t = 0. The flow of
commodity 1 on arc i is denoted xi, and the flow of commodity 2 on arc i is denoted yi.
Each of the flows must satisfy flow conservation, which can be expressed as Ax+ s = 0
(for commodity 1), and Ay + t = 0 (for commodity 2).

Arc i has associated flow cost φi(xi, yi), where φi : R2 → R is convex. (We can
impose constraints such as nonnegativity of the flows by restricting the domain of φi
to R2

+.) One natural form for φi is a function only the total traffic on the arc, i.e.,
φ(xi, yi) = fi(xi + yi), where fi : R → R is convex. In this form, however, φ is not
strictly convex, which will complicate things. To avoid these complications, we will
assume that φi is strictly convex.

The problem of choosing the minimum cost flows that satisfy flow conservation can be
expressed as

minimize
∑n

i=1 φi(xi, yi)
subject to Ax+ s = 0, Ay + t = 0,

with variables x, y ∈ Rn. This is the bi-commodity network flow problem.

(a) Propose a distributed solution to the bi-commodity flow problem using dual de-
composition. Your solution can refer to the conjugate functions φ∗i .

(b) Use your algorithm to solve the particular problem instance with

φi(xi, yi) = (xi + yi)
2 + ε(x2

i + y2
i), domφi = R2

+,

with ε = 0.1. The other data for this problem can be found in bicommodity_data.[m|jl].
To check that your method works, compute the optimal value p?, using CVX.

For the subgradient updates use a constant stepsize of 0.1. Run the algorithm for
200 iterations and plot the dual lower bound versus iteration. With a logarithmic
vertical axis, plot the norms of the residuals for each of the two flow conservation
equations, versus iteration number, on the same plot.

Hint. We have posted a function [x,y] = quad2_min(eps,alpha,beta), which com-
putes

(x∗, y∗) = argmin
x≥0,y≥0

(
(x+ y)2 + ε(x2 + y2) + αx+ βy

)
analytically. You might find this function useful.

32

6.2 Distributed lasso. Consider the `1-regularized least-squares (‘lasso’) problem

minimize f(z) = (1/2)

∥∥∥∥∥∥
[
A1 0 B1

0 A2 B2

] x1

x2

y

− [c1

c2

]∥∥∥∥∥∥
2

2

+ λ

∥∥∥∥∥∥
 x1

x2

y

∥∥∥∥∥∥
1

,

with optimization variable z = (x1, x2, y) ∈ Rn1 ×Rn2 ×Rp. We can think of xi as the
local variable for system i, for i = 1, 2; y is the common or coupling variable.

(a) Primal decomposition. Explain how to solve this problem using primal decompo-
sition, using (say) the subgradient method for the master problem.

(b) Dual decomposition. Explain how to solve this problem using dual decomposition,
using (say) the subgradient method for the master problem. Give a condition (on

the problem data) that allows you to guarantee that the primal variables x
(k)
i

converge to optimal values.

(c) Numerical example. Generate some numerical data as explained below, and solve
the problem (using CVX) to find the optimal value p?. Implement primal and
dual decomposition (as in parts (a) and (b)), using CVX to solve the subproblems,
and the subgradient method for the master problem in both cases. For primal
decomposition, plot the relative suboptimality (f(z(k)) − p?)/p? versus iteration.

For dual decomposition, plot the relative consistency residual ‖y(k)
1 − y

(k)
2 ‖2/‖y?‖2

versus iteration, where y? is an optimal value of y for the problem. In each case,
you needn’t worry about attaining a relative accuracy better than 0.001, which
corresponds to 0.1%.

Generating the data. Generate Ai, Bi, and ci with entries from a standard Gaus-
sian, with dimensions n1 = 100, n2 = 200, p = 10, m1 = 250, and m2 = 300
(these last two are the dimensions of c1 and c2). Check that the condition you
gave in part (b) is satisfied. Choose λ = 0.1λmax, where λmax is the value of λ
above which the solution is z? = 0. (See homework 2, exercise 3.) To get reason-
able convergence (say, in a few tens of iterations), you may need to play with the
subgradient step size.

You are of course welcome (even, encouraged) to also try your distributed lasso
solver on problem instances other than the one generated above.

6.3 Parallel Subgradient Computation. In this question, you will implement subgradient
computations using the parallel computing library Dask.

(a) (0 points) Read the example showing how to modify Python code to utilize data
parallelism via Dask here. Install Python and Dask as described on this page.

(b) (2 points) Suppose that x ∈ Rn is fixed and given. Compute a subgradient of the
function

f(x) := max
j∈{1,...,m}

aTj x

33

https://docs.dask.org/en/stable/delayed.html#example
https://docs.dask.org/en/stable/install.html

by using the Python code template below (also available in Canvas/Files/Homeworks).
Set n = 100 × 106 and m = 4. Generate x ∈ Rn and a1, ..., am ∈ Rn randomly
and independently from a standard normal distribution. Your code should return
a valid subgradient of f(x) at x. Repeat the data generation and subgradient
calculation for 100 trials and plot a histogram of the total computation time of
the subgradient using the serial approach.

(c) (3 points) Implement the same subgradient computation in (b) using Dask to see
the benefit of data parallelism in terms of the total computation time. You only
have to modify your code in (b) using dask.delayed as shown in this tutorial.
Repeat the data generation and subgradient calculation for 100 trials and plot a
histogram of the total computation time of the subgradient with parallelization.

(d) (2 points) Implement the same subgradient calculation in part (b) using numpy.matmul()

and numpy.argmax(). Repeat the data generation and subgradient calculation for
100 trials and plot a histogram of the total computation time of the subgradient
with Numpy.

(e) (1 points) Visualize the computation graph for your Dask based implementation
using the function visualize() for n = 5, m = 4.

from time import time

import dask

import numpy as np

def inprod(x, y):

return np.dot(x,y)

n, m = 100000000, 4

data = np.random.randn(m,n)

start = time()

output = []

x= np.random.randn(n)

for i in range(data.shape[0]):

output.append(inprod(data[i,:],x))

index = np.argmax(output)

print("Time spent for the computation without parallelization:",time()-start)

34

https://docs.dask.org/en/stable/delayed.html
https://docs.dask.org/en/stable/delayed.html

7 Monotone operators and operator splitting

7.1 Cutting plane for nonexpansive operators. Suppose F : Rn → Rn is nonexpansive, and
let x? be any fixed point. For x ∈ Rn, let z = (1/2)(x + F (x)) (which would be the
next iterate in damped iteration, with θ = 1/2). Show that

(F (x)− x)T (x? − z) ≥ 0.

Draw a picture illustrating this inequality. Thus, by evaluating F (x), we can construct
a (deep-cut) cutting plane that separates x from the fixed point set. This means we
can find a fixed point of a nonexpansive operator using any localization method, such
as the ellipsoid method or the analytic-center cutting-plane method.

7.2 Diode relation. The relation D = {(x1, x2) | x1x2 = 0, x1 ≤ 0, x2 ≥ 0} is called
the diode relation, since it is the V-I characteristic of an ideal diode. Show that D is
monotone, and find its resolvent (with λ > 0) and Cayley operator. Plot the relation
D, its resolvent R, and its Cayley operator C.

7.3 Fixed point set of nonexpansive operator. Suppose that F is a nonexpansive operator
on Rn with domF = Rn. Show that its fixed point set, X = {x | F (x) = x}, is
convex.

Hint. Prove, and then use, the following fact: If the sum of the (Euclidean) distances
between a point and two others equals the distance between the others, then the point
is on the line segment between the two others. (You should draw a picture of this.)

7.4 Kelley’s cutting-plane algorithm with proximal regularization. The Kelley cutting-plane
method was described in an earlier exercise. In this exercise we explore a simple
modification of the basic Kelley cutting-plane method that can dramatically speed up
convergence.

We consider the problem of minimizing a convex function f : Rn → R over a convex
set C, using a subgradient oracle for f . Suppose we have evaluated the function and
a subgradient at the iterates x(1), . . . , x(k). We define the associated piecewise-linear
approximation (and under-estimator) of f as

f̂ (k)(x) = max
i=1,...,k

(
f(x(i)) + g(i)T (x− x(i))

)
.

Kelley’s cutting-plane algorithm is the iteration

x(k+1) = argmin
x∈C

f̂ (k)(x).

Here we mean any minimizer; the argmin need not be unique. This requires minimizing
a piecewise-linear function over C in each iteration.

Kelley’s cutting-plane algorithm with proximal regularization is the iteration

x(k+1) = argmin
x∈C

(
f̂ (k)(x) + (ρ/2)‖x− x(k)‖2

2

)
35

where ρ > 0 is a parameter. (Note that ρ = 0 gives the standard Kelley cutting-plane
algorithm.) With proximal regularization, the argmin is unique. Kelley’s cutting-plane
algorithm with proximal regularization requires minimizing a quadratic function (with
diagonal Hessian) plus a piecewise-linear function over C in each iteration.

The lower and upper bounds on p? = infx∈C f(x) (used in Kelley’s cutting-plane
method)

L(k) = inf
x∈C

f̂ (k)(x) ≤ p?, U (k) = min
i=1,...,k

f(x(i)) ≥ p?,

are of course still valid, although evaluating L(k) now involves solving an additional
problem each iteration. (For this reason, the method is often used without calculating
L(k).)

Use proximal regularization for Kelley’s cutting-plane algorithm in order to solve the
lasso problem inside the unit cube,

minimize (1/2)‖Ax− b‖2
2 + ‖x‖1

subject to ‖x‖∞ ≤ 1,

with variable x ∈ Rn, and parameters A ∈ Rm×n, b ∈ Rm. We recommend choosing
a problem with dimensions n = 10 and m = 50. One way to generate data is the
following:

randn(’state’,0);

rand(’state’,0);

A = randn(m,n);

z = 2*rand(n,1)-1;

b = A*z;

In this way, the optimal point z will be inside the unit cube, so the constraint ‖x‖∞ ≤ 1
will not be active at the optimal point. You may need to experiment a bit with the
regularization parameter ρ.

Compare the results to Kelley’s cutting-plane method without regularization.

7.5 Contraction analysis of projected gradient method. Suppose f : Rn → R is convex and
twice differentiable, with mI � ∇2f(x) � LI for all x. (That is, f is strongly convex,
and ∇f has Lipschitz constant L.) Let C ⊂ Rn be a closed convex set, and Π be the
Euclidean projection onto C. The projected gradient method, with step size α > 0, is
the iteration

xk+1 = F (xk) = Π(xk − α∇f(xk)).

(a) Show that x is a fixed point of F if and only if x minimizes f(x) subject to x ∈ C.
(b) Find conditions on α, m, and L under which F is a contraction.

(c) Find the value of α that minimizes the Lipschitz constant on F you found in
part (b), and give the associated Lipschitz constant.

36

7.6 Iterative refinement for linear equations. Suppose that A ∈ Sn+, so choosing x to
minimize f(x) = (1/2)xTAx− bTx is the same as solving the linear equations Ax = b.
Show that the proximal point algorithm, applied to minimizing f , can be expressed as
the following iteration, initialized with x0 = 0 (or any other initial point):

rk = b− Axk

xk+1 = xk + (A+ ρI)−1rk

where ρ = 1/λ > 0 is a parameter. This is called iterative refinement.

Remark. This is used in the following context. Suppose that A has a very high (or
infinite) condition number, so carrying out a Cholesky factorization of A is numerically
unstable (or impossible). For ρ large enough (and indeed, not too large), we can
easily carry out a Cholesky factorization of A + ρI. We store the factorization, so
that subsequent solves in iterative refinement are cheaper (by a factor of n, when A is
dense). Thus the cost of a few steps of iterative refinement (or more, when n is large)
is approximately zero.

7.7 Optimal parameter choice for Peaceman-Rachford algorithm. Consider the problem

minimize f(x) + g(x),

with variable x ∈ Rn, where f, g : Rn → R ∪ {+∞} are convex, closed, and proper
functions. This problem is equivalent to solving 0 ∈ ∂f(x) + ∂g(x). The Peaceman-
Rachford iteration for solving this problem is

zk+1 = C∂fC∂g(z
k),

where
C∂f (z) = 2 (I + λ∂f)−1 (z)− z = 2proxλf (z)− z

is the Cayley operator of ∂f , and similarly for C∂g, with λ > 0. This iteration need
not converge. But it does converge if either C∂f or C∂g is a contraction. (Note that
C∂f and C∂g are nonexpansive.)

(a) Assume that f is convex quadratic, f(x) = (1/2)xTPx+ qTx, with P ∈ Sn++ and
q ∈ Rn. Find the smallest Lipschitz constant on C∂fC∂g in terms of λ and P ,
without any further assumptions on g. (Your answer can involve the eigenvalues
of P , ordered as λmax(P) = λ1 ≥ · · · ≥ λn = λmin(P) > 0.)

(b) Find λopt, the value of λ for which the Lipschitz constant in part (a) is minimized,
and give the associated Lipschitz constant for C∂fC∂g. Express λopt in terms of the
eigenvalues of P . Express the optimal Lipschitz constant in terms of the condition
number κ of P , given by κ = λmax(P)/λmin(P).

37

(c) Consider the case f(x) = ‖Ax − b‖2
2 and g the indicator function of the nonneg-

ative orthant. (This is the nonnegative least-squares problem.) The optimality
conditions for this problem are

x � 0, AT (Ax− b) � 0, xi(A
T (Ax− b))i = 0, i = 1, . . . , n.

At each iteration of the Peaceman-Rachford algorithm, the point xk = R∂g(z
k)

satisfies the first optimality condition. We stop the algorithm when AT (Axk−b) �
−ε1, and (xk)i(A

T (Axk − b))i ≤ ε for i = 1, . . . , n, where ε > 0 is a tolerance.

Implement the Peaceman-Rachford algorithm in this case, with tolerance ε =
10−4.

Generate a random instance of the problem with m = 500 and n = 200, and plot
the number of iterations required versus λ over a range that includes λopt (from
part (b)). The horizontal axis should be logarithmic, showing λ/λopt (say, for 30
values from 0.01 to 100).

Repeat for several random instances, and briefly comment on the results.

7.8 Solving LPs via alternating projections. Consider an LP in standard form,

minimize cTx
subject to Ax = b

x � 0,

with variable x ∈ Rn, and where A ∈ Rm×n. A tuple (x, ν, λ) ∈ R2n+m is primal-dual
optimal if and only if

Ax = b, x � 0, −ATν + λ = c, λ � 0, cTx+ bTν = 0.

These are the KKT optimality conditions of the LP. The last constraint, which states
that the duality gap is zero, can be replaced with an equivalent condition, λTx = 0,
which is complementary slackness.

(a) Let z = (x, ν, λ) denote the primal-dual variable. Express the optimality condi-
tions as z ∈ A ∩ C, where A is an affine set, and C is a simple cone. Give A as
A = {z | Fz = g}, for appropriate F and g.

(b) Explain how to compute the Euclidean projections onto A and also onto C.
(c) Implement alternating projections to solve the standard form LP. Use zk+1/2 to

denote the iterate after projection onto A, and zk+1 to denote the iterate after
projection onto C. Your implementation should exploit factorization caching in
the projection onto A, but you don’t need to worry about exploiting structure in
the matrix F .

Test your solver on a problem instance with m = 100, n = 500. Plot the residual
‖zk+1 − zk+1/2‖2 over 1000 iterations. (This should converge to zero, although
perhaps slowly.)

38

Here is a simple method to generate LP instances that are feasible. First, generate
a random vector ω ∈ Rn. Let x? = max{ω, 0} and λ? = max{−ω, 0}, where the
maximum is taken elementwise. Choose A ∈ Rm×n and ν? ∈ Rm with random
entries, and set b = Ax?, c = −ATν? + λ?. This gives you an LP instance with
optimal value cTx?.

(d) Implement Dykstra’s alternating projection method and try it on the same prob-
lem instances from part (c). Verify that you obtain a speedup, and plot the same
residual as in part (c).

7.9 A proximal subgradient method. Consider the following problem:

minimize f(x) + ϕ(x) subject to x ∈ X,

where X ⊂ Rn is a closed convex set, and f : Rn → R and ϕ : Rn → R are convex.
We study the convergence of the proximal subgradient method, which iterates

gk ∈ ∂f(xk),

xk+1 = proxαkϕ
(xk − αkgk) = argmin

x∈X

{
(gk)Tx+ ϕ(x) +

1

2αk

∥∥x− xk∥∥2

2

}
.

In particular, we show that the function ϕ does not hurt convergence over what is
attainable when minimizing f(x).

(a) Show that for some ϕ′(xk+1) ∈ ∂ϕ(xk+1), we have(
gk + ϕ′(xk+1) +

1

αk
(xk+1 − xk)

)T
(y − xk+1) ≥ 0 for all y ∈ X.

(b) Using the representation from part (a) and choosing y = x?, show that for any
x? ∈ X,

f(xk)−f(x?) ≤ ϕ(x?)−ϕ(xk+1)+
1

2αk

∥∥xk − x?∥∥2

2
− 1

2αk

∥∥xk+1 − x?
∥∥2

2
+
αk
2

∥∥gk∥∥2

2
.

Hint. The inequality gTy ≤ 1
2α
‖y‖2

2 + α
2
‖g‖2

2, valid for any α ≥ 0, may prove
useful.

(c) Show that for a fixed stepsize sequence αk = α for all k, we have

k∑
i=1

[
f(xi) + ϕ(xi)− f(x?)− ϕ(x?)

]
≤ 1

2α

∥∥x1 − x?
∥∥2

2
+
α

2

k∑
i=1

∥∥gi∥∥2

2
+ϕ(x1)−ϕ(xk+1).

(d) Let x̄k = 1
k

∑k
i=1 x

i, and assume that x1 ∈ argminx∈X ϕ(x) and ‖gi‖2 ≤ G for all
i. Give a stepsize α such that

f(x̄k) + ϕ(x̄k)− f(x?)− ϕ(x?) ≤ ‖x
1 − x?‖2G√

k
.

39

8 ADMM

8.1 Reducing the general ADMM problem to consensus. The general form ADMM problem
is

minimize f(x) + g(z)
subject to Ax+Bz = c,

with variables x ∈ Rn, z ∈ Rm. We assume that f and g are convex, and that c ∈ Rp

(i.e., there are p scalar equality constraints).

A special case is the (two variable) consensus problem, which has the form

minimize f(x) + g(z)
subject to x− z = 0,

with variables x ∈ Rn, z ∈ Rm.

Show how to reduce the general form ADMM problem to the consensus problem. (In
other words, explain how to solve the general form problem, assuming you can solve the
consensus problem.) Explain why the functions in your consensus problem are convex.
(You do not have to worry about analysis details, such as showing that functions
are closed.) Explain the relation between ADMM for the general form problem, and
ADMM for the consensus problem that you form in your reduction.

Remark. We have already seen that ADMM and Douglas-Rachford splitting agree for
the consensus problem. The equivalence in this exercise connects the general ADMM
form with Douglas-Rachford splitting.

Hint. Define f̃(x̃) = infAx=x̃ f(x).

8.2 Block distributed flow control. We consider the standard flow control problem, with n
flows, given by f ∈ Rn

+, that travel over m links of a network. The traffic on each link
is the sum of the flows that pass over the link, which we express as t = Rf , where
t ∈ Rm is the vector of link traffic, and R ∈ Rm×n is the routing matrix, defined as

Rij =

{
1 flow j passes over link i
0 otherwise.

The traffic on each link cannot exceed its capacity: t � c, where c ∈ Rm is the vector
of link capacities. The objective is to maximize a total utility, given by

U(f) =
n∑
j=1

Uj(fj),

where Uj : R+ → R are concave functions. The flow vector f is the variable; R, c, and
U1, . . . , Un are problem data.

Here we consider the case when the m links are partitioned into two groups. This
partitioning of the links induces a partitioning of the flows as well, into three groups:

40

flows that pass only over links in the first group, flows that pass only over links in the
second group, and flows that pass over links in both groups.

The goal is to use ADMM to develop a method to solve the flow control problem,
using one flow control solver for each group of links. Do this by replicating (i.e.,
making copies of) the flow variables that pass over links in both groups, and introducing
an equality (consistency) constraint between the replicated variables. This gives a
consensus problem. For this problem there is a very simple way to obtain a feasible
flow vector from the replicated ones (each of which is only known to be feasible for the
flows over one of the groups of links): We simply take the (elementwise) minimum.

(a) Give the details of using ADMM to solve the distributed flow control problem as
outlined above. Explain what problems are solved in each step, and how they
coordinate to solve the whole problem.

(b) Implement your method on the problem instance with data given in the file
dist_flow_ctrl_data.m, with Uj(x) =

√
x, for j = 1, . . . , n. You can use CVX

to solve the two flow control problems required in each iteration. To show con-
vergence of the algorithm, plot U(fk)−U? versus k, where fk is the feasible flow
vector at iteration k obtained using the method described above, and U? is the
optimal value (found using CVX).

The data file contains R and c. The partitions are encoded as follows. The first
ma rows of R (and entries of c) correspond to the links in the first group, and the
rest correspond to the second group. The first na entries of f correspond to the
flows that pass over links in the first group only; the next nb entries correspond to
the flows that pass over links in the second group only; and the remaining entries
of f are those that pass over both groups of links. The data ma, na, and nb are
given in the data file.

8.3 ADMM for smart grid device coordination. We consider an electrical grid consisting
of N devices that exchange electricity over T time periods. Device i has energy profile
pi ∈ RT , with pit denoting the energy consumed by device i in time period t, for
t = 1, . . . , T , i = 1, . . . , N . (When pit < 0, device i is producing energy in time period
t.) Each device has a convex objective function fi : RT → R, which we also use to
encode constraints, by setting fi(p

i) = ∞ for profiles that violate the constraints of
device i. In each time period the energy flow has to balance, which means

N∑
i=1

pit = 0, t = 1, . . . , T.

The optimal profile coordination problem is to minimize the total cost,
∑N

i=1 fi(p
i),

subject to the balance constraint, with variables pi, i = 1, . . . , N .

In this problem you will use ADMM to solve the optimal profile coordination problem in
a distributed way, with each device optimizing its own profile, and exchanging messages
to coordinate all of the profiles.

41

From this point on, we consider a specific (and small) problem instance. There are
three devices: a generator, a fixed load, and a battery, with cost functions described
below.

• Generator. The generator has upper and lower generator limits: Pmin ≤ −pt ≤
Pmax, for t = 1, . . . , T . (Note the minus sign, since a generator’s profile is typically
negative, using our convention.) The objective is

fgen(p) =
T∑
t=1

(α(−pt)2 + β(−pt)),

where α, β > 0 are given constants.

• Fixed load. The fixed load has zero objective function and the constraint that its
power profile must equal a given consumption profile d ∈ RT .

• Battery. The battery has zero objective function, and charge/discharge limits
given by C and D, respectively: −D ≤ pt ≤ C, for t = 1, . . . , T . The battery is
initially uncharged (i.e., q1 = 0), so its charge level in period t is qt =

∑t−1
τ=1 pτ

(we neglect losses for this problem). The charge level must be nonnegative, and
cannot exceed the battery capacity: 0 ≤ qt ≤ Q, t = 1, . . . , T + 1. The charge
level is extended to time T + 1 to allow the battery to charge/discharge in time
T , subject to the operational constraints.

(a) Use CVX to solve the problem with data given in admm_smart_grid_data.m. Plot
the (optimal) power profile for the generator and battery, as well as the battery
charge level.

(b) Implement ADMM for this problem (you may use CVX to solve each device’s
local optimization in each ADMM iteration). Experiment with a few values of the
parameter ρ to see its effect on the convergence rate of the algorithm. Plot the
norm of the energy balance residual, versus iteration. Plot the power profiles of
the generator and battery, as well as the energy balance residual, for several values
of iteration (say, after one iteration, after 10 iterations, and after 50). Check the
results against the solution found by CVX.

8.4 Radiation treatment planning. (For some background, and a slightly different formu-
lation, see exercise of same name in Convex Optimization Additional Exercises.) The
radiation treatment planning problem is to choose the radiation beam levels in a treat-
ment plan, given by b ∈ Rn

+, where bi ∈ [0, 1] is the ith beam level. The beam levels
result in a dosage pattern d ∈ Rm, where di is the radiation dosage in voxel i of the
patient. These are related by d = Ab, where the matrix A depends on the geometry
of the equipment and possibly scattering inside the patient. You can assume that A
is known and given, with m > n. (Although not relevant in this problem, the entries
of A are nonnegative.) The goal is to achieve dmin � d � dmax, where dmin ∈ Rm

+ and

42

dmax ∈ Rm
+ are given lower and upper target dosages, respectively. (These vary by

voxel.) Typically dmin
i is large when voxel i is in the tumor, and dmax

i is small when
voxel i is outside the tumor. These target dosages are generally not achievable, so we
form a sum of violations objective, which we minimize:

minimize 1T (dmin − d)+ + 1T (d− dmax)+

subject to 0 � b � 1, d = Ab,

with variables b and d.

(a) Explain how to use ADMM to solve the treatment planning problem, with one
step handling the linear equality constraint relating b and d, and the other step
handling the nonlinear objective in d and the constraints on b. Work out each
step explicitly, and give the computational cost (in order). You may not use CVX
for the prox operators (we will deduct points for solutions that do). You can
use factorization caching for the step that handles the equality constraint, so give
the computational cost for the first iteration and subsequent iterations separately.
You can assume that A is dense. (In real problems, A is sparse.)

Hints. Work out the projection onto the equality constraint, and try to express
it in terms of (I + ATA)−1, not (I + AAT)−1 using the matrix inversion lemma.
You may also find it useful to cache ATA. If your cost per iteration (after the
first one) is not O(mn), it’s wrong.

(b) Implement ADMM for the problem instance given in dosage_opt_data.m. This
script calls line_pixel_length.m (while creating the matrix A), which you will
also need to download.

The problem instance is 2-dimensional, with a rectangular 50× 50 array of pixels
(voxels), so m = 2500. These pixels are divided into 3 groups: a ‘tumor’ region,
two ‘critical’ regions, and the other pixels. (The tumor and critical regions are
rectangular in this problem instance.) In each of these regions, dmin and dmax are
constant within their respective regions. There are a total of n = 400 beams.
Each beam is a simple line, and Aij is the length of line j in pixel i. (In a real
problem, the matrix A is more complicated.) The beams are 20 sets of 20 parallel
beams, evenly spaced through the center of the area, with angles varying every 9◦

from 0◦ to 171◦. (You won’t need this information, since we compute the matrix
A for you.)

In addition to defining the problem data, the script will create several relevant
plots. The first plot simply shows the geometry of the tumor and critical regions.
The second plot shows the dosage that results from uniform beam levels, and the
third plots show histograms of pixel dosages for the tumor region, the critical
regions, and the other pixels, along with the respective lower and upper target
dosages. (Hopefully, your design will be much better.)

Check your solution using CVX (which might take a minute or two).

43

Plot the dosage pattern obtained, and compare it to the one obtained with a
uniform beam pattern. Do the same for the dosage histograms.

8.5 Quantile regression. For α ∈ (0, 1), define hα : Rn → R as

hα(x) = α1Tx+ + (1− α)1Tx−,

where x+ = max{x, 0} and x− = max{−x, 0}, where the maximum is taken element-
wise. For the connection between this function and quantiles, see exercise 1.4.

(a) Give a simple expression for the proximal operator of hα.

(b) The quantile regression problem is

minimize hα(Ax− b),

with variable x ∈ Rn and parameters A ∈ Rm×n, b ∈ Rm, and α ∈ (0, 1). Explain
how to use ADMM to solve this problem by introducing a new variable (and
constraint) z = Ax − b. Give the details of each step in ADMM, including how
one of the steps can be greatly speeded up after the first step.

(c) Implement your method on data (i.e., A and b) generated as described below, for
α ∈ {0.2, 0.5, 0.8}. For each of these three values of α, give the optimal objective
value, and plot a histogram of the residual vector Ax− b. Generate A and b using
the following code:

m = 2000;

n = 200;

rand(’state’, 3);

A = rand(m, n);

b = rand(m, 1);

Hint. You should develop, debug, and test your code on a smaller problem in-
stance, so you can easily (i.e., quickly) check the results against CVX.

44

9 Sequential convex programming

9.1 Minimum eigenvalue via convex-concave procedure. The (nonconvex) problem

minimize xTPx
subject to ‖x‖2

2 ≥ 1,

with P ∈ Sn×n+ , has optimal value λmin(P); x is optimal if and only if it is an eigenvector
of P associated with λmin(P). Explain how to use the convex-concave procedure to (try
to) solve this problem.

Generate and (possibly) solve a few instances of this problem using the convex-concave
procedure, starting from a few (nonzero) initial points. Compare the values found by
the convex-concave procedure with the optimal value.

9.2 Circle packing. The goal is to place N points in a unit box in R2 so as to maximize
the minimum distance between any of the points:

maximize D
subject to ‖xi − xj‖2 ≥ D, i 6= j

0 � xi � 1,
(3)

with variables x1, . . . , xN ∈ R2 and D ∈ R. This problem, and various variations on it,
are sometimes called circle-packing problems, since they come down to placing circles
in such a way that they don’t intersect (except at the boundaries). You can probably
guess what good solutions look like.

(a) Area bound. Derive an upper bound D on the optimal value, using the following
argument. For xi and D feasible, the N disks centered at xi with diameter D
don’t overlap, except on their boundaries; these disks also lie inside the box {x |
−(D/2)1 � x � (1 + D/2)1}. Therefore, the total area of the disks is not more
than the area of this box.

(b) Sequential convex programming. Explain how to (locally) solve this problem using
sequential convex programming.

(c) Numerical example. Carry out sequential convex programming for the problem
above, with N = 11, starting from an initial point with xi 6= xj for i 6= j. Plot
D versus iteration, for a few different starting points (put these all on the same
plot). Verify that for different starting points, the algorithm can converge to
different objective values. Compare the objective values obtained with the bound
D found in part (a). Plot the final arrangement of the circles (for one of your
starting points) using draw_circle_packing.m. For your entertainment, you can
draw the circles in each iteration, and watch the evolution of the algorithm. The
calling sequence is draw_circle_packing(x,D,iter), where x is a 2×N matrix
containing the xi, D is D, and iter is the iteration counter (which is displayed in
the title).

45

9.3 Trajectory optimization with avoidance constraints. In this problem, you must chooseN
trajectories (say, of some vehicles) in Rn, which are denoted by pi(t) ∈ Rn, t = 1, . . . , T ,
i = 1, . . . , N . The objective is to minimize

J =
N∑
i=1

T−1∑
t=1

‖pi(t+ 1)− pi(t)‖2
2,

subject to fixed starting and final positions,

pi(1) = pstart
i , pi(T) = pfinal

i , i = 1, . . . , N.

The solution to the problem stated so far is simple: Each trajectory follows a straight
line from the starting position to the final position, at uniform speed. Here is the
wrinkle: We have avoidance constraints, of the form

‖pi(t)− pj(t)‖2 ≥ D, i 6= j, t = 2, . . . , T − 1.

(Thus, the vehicles must maintain a given distance D from each other at all times.)
These last constraints are obviously not convex.

(a) Explain how to use the convex-concave procedure to (approximately, locally) solve
the problem.

(b) Implement the method for the problem with data given in traj_avoid_data.m,
which involves three vehicles moving in R2. Executing this file runs a movie
showing the vehicle trajectories when they move in straight lines at uniform speed,
with a circle around each vehicle of diameter D. You can use this code to visualize
the trajectories you obtain as your algorithm runs.

You should start the convex-concave procedure from several different initial tra-
jectories for which pi(t) 6= pj(t), t = 1, . . . , T . For example, you can simply take
pi(t) ∼ N (0, I). Plot the objective J versus iteration number for a few different
initial trajectories (on the same plot). Verify that the avoidance constraints are
satisfied after the first iteration.

For the best set of final trajectories you find, plot the minimum inter-vehicle
distance, mini 6=j ‖pi(t)− pj(t)‖2, versus time. Plot the trajectories in R2. And of
course, for your own amusement, view the movie.

Hint. Don’t try to write elegant code that handles the case of general N . We’ve
chosen N = 3 so you can just name the trajectories (2× T matrices) p1, p2, and
p3, and explicitly write out the three (i.e., N(N − 1)/2) avoidance constraints.

46

10 Conjugate-gradient and truncated Newton meth-

ods

10.1 Conjugate gradient residuals. Let r(k) = b− Ax(k) be the residual associated with the
kth element of the Krylov sequence. Show that r(j)T r(k) = 0 for j 6= k. In other
words, the Krylov sequence residuals are mutually orthogonal. Do not use the explicit
algorithm to show this property; use the basic definition of the Krylov sequence, i.e.,
x(k) minimizes (1/2)xTAx− bTx over Kk.

10.2 CG and PCG example. In this problem you explore a variety of methods to solve
Ax = b, where A ∈ Sn++ has block diagonal plus sparse structure: A = Ablk + Asp,
where Ablk ∈ Sn++ is block diagonal and Asp ∈ Sn is sparse. For simplicity we assume
Ablk consists of k blocks of size m, so n = mk. The matrix Asp has N nonzero elements.

(a) What is the approximate flop count for solving Ax = b if we treat A as dense?

(b) What is the approximate flop count for an iteration of CG? (Assume multiplication
by Ablk and Asp are done exploiting their respective structures.) You can ignore
the handful of inner products that need to be computed.

(c) Now suppose that we use PCG, with preconditioner M = A−1
blk. What is the

approximate flop count for computing the Cholesky factorization of Ablk? What
is the approximate flop count per iteration of PCG, once a Cholesky factorization
of Ablk if found?

(d) Now consider the specific problem with Ablk, A, and b generated by
ex_blockprecond_data.m. Solve the problem using direct methods, treating A
as dense, and also treating A as sparse. Run CG on the problem for a hundred
iterations or so, and plot the relative residual versus iteration number. Run PCG
on the same problem, using the block-diagonal preconditioner M = A−1

blk. Give
the solution times for dense direct, sparse direct, CG (to relative residual 10−4,
say), and PCG (to relative residual 10−8, say). For PCG break out the time as
time for initial Cholesky factorization, and time for PCG iterations.

Hints.

• To force Matlab to treat A as dense, use full(A).

• You do not need to implement the conjugate gradient algorithm; instead use the
pcg function in Matlab.

• To block precondition with M = A−1
blk, first find the Cholesky factorization of Ablk,

i.e., lower triangular L with LLT = Ablk. The Matlab code to implement block
preconditioning is

L = chol(A_blk)’;

[...] = pcg(A,b,tolerance,MAXITER,L,L’);

47

Matlab uses a sparse Cholesky to factor Ablk, which is less efficient than using a
dense Cholesky factorization on each block separately, but it is efficient enough
to make the point.

10.3 Search directions in the truncated Newton method. Suppose we use CG to compute an
approximate solution of the Newton system Hv + g = 0. (Here H = ∇2f(x) � 0 and
g = ∇f(x) 6= 0.)

(a) Suppose we start CG from v(0) = 0. Verify that v(1) has the form −αg for some
α > 0. (Thus, after one step, the search direction is in the direction of the negative
gradient.) Verify that (1/2)v(1)THv(1) +gTv(1) < 0. Explain why this implies that
gTv(k) < 0 for all k ≥ 1, i.e., all iterates of the CG iteration are descent directions.

(b) Suppose that z is a descent direction, i.e., gT z < 0. Find α? > 0 that minimizes
(1/2)(αz)TH(αz) + gT (αz), and verify that the resulting value is negative. Show
that if we start the CG process with v(0) = α?z, all CG iterates are descent
directions, i.e., gTv(k) < 0 for all k ≥ 1.

Hint. Use the fact that, for any starting point v(0), the sequence (1/2)v(k)THv(k) +
gTv(k), k = 0, 1, . . ., is nonincreasing.

10.4 Randomized preconditioners for conjugate gradient methods. In this question, we ex-
plore the use of some randomization methods for solving overdetermined least-squares
problems, focusing on conjugate gradient methods. Letting A ∈ Rm×n be a matrix (we
assume that m� n) and b ∈ Rm, we wish to minimize

f(x) =
1

2
‖Ax− b‖2

2 =
1

2

m∑
i=1

(aTi x− bi)2,

where the ai ∈ Rn denote the rows of A.

Given m ∈ {2i, i = 1, 2, . . .}, the (unnormalized) Hadamard matrix of order m is
defined recursively as

H2 =

[
1 1
1 −1

]
and Hm =

[
Hm/2 Hm/2

Hm/2 −Hm/2

]
.

The associated normalized Hadamard matrix is given by H
(norm)
m = Hm/

√
m, which

evidently satisfies H
(norm)
m

T
H

(norm)
m = Im×m. Moreover, via a recursive algorithm it

is possible to compute Hmx in time O(m logm), which is much faster than m2 for a
general matrix.

To solve the least squares minimization problem using conjugate gradients, we must
solve ATAx = AT b. In class, we discussed that using a preconditioner M such that
M ≈ A−1 can give substantial speedup in computing solutions to large problems.
Consider the following scheme to generate a randomized preconditioner, assuming that
m = 2i for some i:

48

i. Let S = diag(S11, . . . , Smm), where Sjj are random {−1,+1} signs

ii. Let p ∈ Z+ be a small positive integer, say 20 for this problem.

iii. Let R ∈ {0, 1}n+p×m be a row selection matrix, meaning that each row of R
has only 1 non-zero entry, chosen uniformly at random. (The location of these
non-zero columns is distinct.)3

iv. Define Φ = RH
(norm)
m S ∈ Rn+p×m

We then define the matrix M via its inverse M−1 = ATΦTΦA ∈ Rn×n.

(a) How many FLOPs (floating point operations) are required to compute the matri-
ces M−1 and M , respectively, assuming that you can compute the matrix-vector
product Hmv in time m logm for any vector v ∈ Rm?

(b) How many FLOPs are required to näıvely compute ATA, assuming A is dense
(using standard matrix algorithms)?

(c) How many FLOPs are required to compute ATAv for a vector v ∈ Rn by first
computing u = Av and then computing ATu?

(d) Suppose that conjugate gradients runs for k iterations. Using the preconditioned
conjugate gradient algorithm with M = (ATΦTΦA)−1, how many total floating
point operations have been performed? How many would be required to directly
solve ATAx = AT b? How large must k be to make the conjugate gradient method
slower?

(e) Implement the conjugate gradient algorithm for solving the positive definite lin-
ear system ATAx = AT b both with and without the preconditioner M . To gen-
erate data for your problem, set m = 212 and n = 400, then generate the ma-
trix A by setting A = randn(m, n) * spdiags(linspace(.001, 100, n)) (in
Matlab) and A = randn(m, n) * spdiagm(linspace(.001, 100, n)) (in Ju-
lia), and let b = randn(m, 1). For simplicity in implementation, you may di-
rectly pass ATA and AT b into your conjugate gradient solver, as we only wish to
explore how the methods work. (In Matlab, the pcg method may be useful.)

Plot the norm of the residual rk = AT b− ATAxk (relative to
∥∥AT b∥∥

2
) as a func-

tion of iteration k for each of your conjugate gradient procedures. Additionally,
compute and print the condition numbers κ(ATA) and κ(M1/2ATAM1/2).

Include your code.

3Hint. To do this in Matlab, generate a random permutation inds = randperm(m), then set
R = sparse(1:(n+p), inds(1:(n+p)), ones(n+p,1)), n+p, m), in Julia, set R = sparse(1:(n+p),

inds[1:(n+p)], ones(n+p), n+p, m).

49

11 `1 methods for convex-cardinality problems

11.1 Sum-of-norms heuristic for block sparsity. The basic `1 heuristic for finding a sparse
vector x in a convex set C is to minimize ‖x‖1 over C. We are given a partition of x
into subvectors: x = (x(1), . . . , x(k)), with x(i) ∈ Rni . Our goal is to find an x ∈ C
with the fewest number of subvectors x(i) nonzero. Like the basic sparsity problem,
this problem is in general difficult to solve. But a variation on the `1 heuristic can
work well to give a block sparse, if not the block sparsest, vector. The heuristic is to
minimize

k∑
i=1

‖x(i)‖

over x ∈ C.

(a) What happens if the norms above are `1 norms? Would you expect x to be sparse?
Block sparse? (Your answer can be very brief.)

(b) Generate a nonempty polyhedron {y | Ay � b} using

randn(’state’,0);

m = 50; n = 100;

A = randn(m,n); b = randn(m,1);

We will divide x into 20 subvectors, each of length 5. Use the heuristic above, with
`1, `2, and `∞ norms on the subvectors, to find block sparse x in your polyhedron.

Hints. You may find the functions norms and reshape useful.

11.2 Sparse Bayes network identification. Suppose you are given samples y1, . . . , yN ∈ Rn

from an N (0,Σ) distribution, where Σ � 0. (See page 355 of the textbook.) From
these samples you need to estimate the parameter Σ. You’d like the off-diagonals of
Σ−1 to be sparse, if possible. (A sparse Σ−1 corresponds to a compact Bayes network
representation, since (Σ−1)ij = 0 means that xi and xj are conditionally independent,
given the other xk’s.)

(a) Suggest a simple method for finding Σ with the off-diagonals of Σ−1 sparse and
with the likelihood of Σ nearly maximum. Your method should involve a param-
eter λ ≥ 0 that adjusts the trade-off between suboptimality in likelihood, and
sparsity of Σ−1.

(b) Carry out your method on the data found in sp_bayesnet_data.m. The true
inverse covariance, Σ−1, is stored in the matrix Siginv, and the samples y1, . . . , yN
are stored in the matrix Ys. (You may need to experiment with different values
of λ.) Plot the sparsity patterns of Σ−1 and your reconstruction Σ̂−1.

11.3 Rank minimization via the nuclear norm. A simple heuristic for finding a matrix of low
(if not minimum) rank, in a convex set, is to minimize its nuclear norm, i.e., the sum

50

of its singular values, over the convex set. Test this method on a numerical example,
obtained by generating data matrices A0, . . . , An ∈ Rp×q and attempting to minimize
the rank of A0 + x1A1 + · · ·+ xnAn. You can use n = 50, p = 10, q = 10.

11.4 Portfolio investment with linear and fixed costs. The goal is to optimally invest an
initial amount B in a portfolio of n assests. Let xi be the amount (in dollars) of asset
i that we purchase. We assume that no short selling is allowed, i.e., x � 0. We pay a
fixed cost β for each asset we invest in, i.e., for each asset with xi > 0. We also pay
a fee that is proportional to the amount purchased, given by αTx, where αi is the fee
(rate) associated with asset i. The budget constraint can be expressed as

1Tx+ β card(x) + αTx ≤ B.

The mean return on the portfolio is given by µTx, where µi is the mean return of asset
i, and the variance of the portfolio is xTΣx, where Σ is the covariance of the price
changes. Our goal is to minimize the portfolio standard deviation, subject to meeting
a minimum mean return requirement. This can be expressed as the problem

minimize (xTΣx)1/2

subject to µTx ≥ Rmin, x � 0
1Tx+ β card(x) + αTx ≤ B.

(4)

This is a convex-cardinality problem. Once the choice is made of which assets to invest
in, the problem becomes convex. But there are 2n possible subsets of assets to invest
in, so exhaustive search over all of these is not practical for n ≥ 20.

You will focus on a particular instance of this problem, with data given in the file
l1_heuristic_portfolio_data.m on the class web site.

(a) Heuristic portfolio investment. You will use the following `1-norm based heuristic
to approximately solve the portfolio investment problem. First we replace card(x)
with γ1Tx (which is the same as γ‖x‖1, since x � 0), where γ ≥ 0 is a parameter,
to get the problem

minimize (xTΣx)1/2

subject to µTx ≥ Rmin, x � 0
1Tx+ βγ1Tx+ αTx ≤ B.

(5)

Solve (5) for, say, 50 values of γ in [0, 25]. Note that when you solve the problem
for γ = 0, you are just ignoring the fixed investment costs. The solutions of (5)
need not be feasible for the portfolio investment problem (4), since the true budget
constraint can be violated.

For each solution of (5), note the sparsity pattern of x. Fix this sparsity pattern
(which makes card(x) constant), and solve the problem (4). This procedure is
called polishing.

51

Plot the portfolio standard deviation obtained (after polishing) versus γ. What
is the minimum standard deviation, σmin, that you obtain? Give the best port-
folio found (i.e., the assets purchased, and the amounts for each one). Also plot
card(x), i.e., the number of assets invested in, versus γ.

Hint. To determine the sparsity pattern of x after solving (5), you’ll need to use
a reasonable (positive) threshold to determine if xi = 0, as in find(x<1e-3).

(b) A lower bound. For some values of γ the optimal value of (5) is a lower bound on
the optimal value of the original portfolio investment problem (4). Find a simple
value γ̃ of γ for which this is the case. Compute the corresponding lower bound
and compare it to the standard deviation found in (a).

(c) A more sophisticated lower bound. Let x? denote an optimal point for the original
portfolio investment problem (4). Suppose x?i ≤ ui for i = 1, . . . , n. Explain why
the optimal value of the problem

minimize (xTΣx)1/2

subject to µTx ≥ Rmin, x � 0
1Tx+ βvTx+ αTx ≤ B,

where vi = 1/ui, gives a lower bound on the optimal value of the original portfolio
investment problem (4).

A simple choice for ui is ui = B. Better (i.e., smaller) values can be found as the
optimal values of the problems

maximize xi
subject to µTx ≥ Rmin, x � 0

(xTΣx)1/2 ≤ σmin

1Tx+ βγ̃1Tx+ αTx ≤ B,

where σmin is the standard deviation of the portfolio found in part (a). Justify
this.

Carry out this procedure for the given problem instance, and compare the resulting
lower bound to the results from parts (a) and (b).

52

12 Optimization with uncertain data

12.1 Robust geometric program with norm-based uncertainty. We consider a geometric pro-
gram in variables x ∈ Rn

+, with problem data a ∈ Rk
+, data matrix B ∈ Rm×k, and

exponent vectors αi ∈ Rn and βij ∈ Rn. For shorthand, we define xα =
∏n

j=1 x
αj

j for
vectors α ∈ Rn. Consider the problem

minimize
k∑
i=1

aix
αi

subject to
k∑
j=1

Bijx
βij ≤ 1 for i = 1, . . . ,m.

Now assume that we have norm-based data uncertainty in our multipliers ai and Bij,
that is, there exist constants δ ≥ 0 and ε ≥ 0 where all we know is that the data could
be ai ±∆i for a vector ∆ ∈ Rn such that ‖∆‖p ≤ δ, and similarly for the rows of B.
We would like to solve the robust formulation

minimize sup
‖∆‖p≤δ

k∑
i=1

(ai + ∆i)x
αi

subject to
k∑
j=1

(Bij + ej)x
βij ≤ 1 for i = 1, . . . ,m and all e ∈ Rk s.t. ‖e‖p ≤ ε.

Here p ∈ [1,∞] generate the norms for the uncertainty set. Show how to formulate the
robust problem above as a geometric problem.

12.2 Robust facility locations. In the facilities placement problem, we would like to choose
locations for n facilities, denoted x1, . . . , xn ∈ R2, based on the (fixed) locations
of m sources of resources y1, . . . , ym ∈ R2. We assume that associated with each
source/facility pair (yi, xj) there is a cost Aij ≥ 0 that we must pay per unit distance
to transport the goods from source yi to facility xj. In addition, the facilities must
transport goods among themselves, where the cost for transporting per unit distance
between xi and xj is given by Bij ≥ 0. Our problem, then, is to minimize the cost of a
facility location assignment based on the data A ∈ Rm×n and B ∈ Rn×n, which gives
the SOCP

minimize
m∑
i=1

n∑
j=1

Aij ‖yi − xj‖2 +
n∑
i=1

n∑
j=1

Bij ‖xi − xj‖2

in variables x1, . . . , xn ∈ R2.

In some situations, the costs per unit transport from source yi to facility xj may be not
known precisely (or, perhaps more realistically, the exact amount necessary may not

53

be known until after the locations have been chosen). In particular, assume that for
the pairs i, j such that Aij > 0 (there is assumed to be no uncertainty in pairs i, j such
that Aij = 0), the Aij are subject to limited price increases ∆ij ≥ 0 with maximum
increase δ > 0, and for which the total (summed) increase in cost is bounded by kδ,
meaning

∑
ij ∆ij ≤ kδ.

(a) Assuming that the worst allowable values of Aij + ∆ij are realized, Show how
to formulate the problem with uncertainty in prices Aij as a (robust) convex
optimization problem.

(b) Show how to rewrite your formulation from (a) as a second order cone problem
(SOCP).

(c) Using the data in facilities_placement_helper.jl or FacilitiesData.m, solve
the non-robust formulation of the facilities placement problem. Plot the resulting
facility locations (using the method PlotFacilities, available in facilities_placement_helper.jl

or PlotFacilities.m). Now, with robustness parameters k = 4 and δ = .005
and δ = .01, solve your robust formulation. Plot the resulting facility locations.
Can you give, in one or two brief sentences, intuition for any differences you see?

12.3 Sharpest convex bounds on probabilistic constraints. Let A be some statement and 1(A)
be 1 if A is true, 0 otherwise.

(a) Show that for any non-negative convex function φ : R → R+ satisfying φ(x) ≥
1(x ≤ 0), there exists some α ∈ [0,∞] such that φ(x) ≥ [1− α−1x]+ ≥ 1(x ≤ 0)
for all x ∈ R.

(b) Let U be any random variable and f(x, u) an arbitrary function. Show that for any
convex function φ : R → R+ satisfying φ(z) ≥ 1(z ≥ 0), there exists α ∈ [0,∞]
such that

Prob (f(x, U) ≥ t) ≤ E

[
1 +

f(x, U)− t
α

]
+

≤ Eφ(f(x, U)− t).

12.4 Portfolio optimization with chance constraints Consider a portfolio with n assets de-
scribed by random return vector R ∈ Rn, where Rj denotes the relative growth of
asset j, with mean returns µ ∈ Rn

+ and covariance matrix Σ ∈ Sn+ between the returns.
Let the vector x ∈ Rn

+ describe the overall proportional portfolio allocation across the
set of assets, with 1Tx = 1. We would like to maximize our profit while maintaining
low risk, that is, for fixed ε ∈ (0, 1), to guarantee that with probability at least 1 − ε
we achieve some fixed level of profit. We cast this as the (non-convex) optimization
problem

maximize t
subject to Prob

(
RTx ≤ t

)
≤ ε, 1Tx = 1, x � 0.

(6)

Solving this problem is hard in general, so we investigate methods to find allocations x
that guarantee lower bounds for this problem when we assume that the data R come
from a multi-variate normal distribution with mean µ and covariance matrix Σ.

54

As in the lecture notes, let φ be a non-decreasing convex function function φ : R→ R+

with φ(0) = 1. For any such φ, random variable Z, and positive α, we know that

Prob (Z ≥ 0) = E I(Z ≥ 0) ≤ Eφ (Z/α) .

In particular, for any α > 0, the constraint Eφ(α−1Z) ≤ ε is a safe approximation to
the chance constraint in problem (6), meaning it guarantees Prob (Z ≥ 0) ≤ ε.

(a) Let φ(w) = exp(w). Use this φ to show that we can generate lower bounds to
problem (6) by solving the following problem

maximize µTx−
√

2 log 1
ε
‖x‖Σ

subject to 1Tx = 1, x � 0,
(7)

where ‖x‖2
Σ = xTΣx is the Mahalanobis norm generated by Σ ∈ Sn+.

(b) Let φ(w) = (1 + w)+. Use this φ to show that we can generate lower bounds to
(6) by solving the following problem

maximize t
subject to E[(t−RTx+ α)+]− αε ≤ 0,

1Tx = 1, x � 0.
(8)

(c) Evaluate both lower bounds found in parts (a) and (b) for the problem data (mean
µ and covariance Σ) given in robust portfolio data.[jl|m]. There is an ana-
lytic formula for E(t−RTx+α)+, but instead we use a Monte Carlo approximation
to it to solve problem (8): generate 103 sample returns R ∼ N (µ,Σ), and use the
empirical expectation to approximately solve the optimization problem (8). Solve
parts (a) and (b) using each of ε = .1, .05, .01, .005. For each ε, report the op-
timal value achieved for the problems (7) and (8) and the variance x?TΣx? for
the resulting solution x?. Additionally, generate a new set of 104 returns R and
evaluate xTR for each return, and plot histograms of the different return values.
Give a simple (two sentence) explanation of your results.

55

13 Model predictive control

13.1 MPC for output tracking. We consider the linear dynamical system

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t), t = 0, . . . , T − 1,

with state x(t) ∈ Rn, input u(t) ∈ Rm, and output y(t) ∈ Rp. The matrices A and B
are known, and x(0) = 0. The goal is to choose the input sequence u(0), . . . , u(T − 1)
to minimize the output tracking cost

J =
T∑
t=1

‖y(t)− ydes(t)‖2
2,

subject to ‖u(t)‖∞ ≤ Umax, t = 0, . . . , T − 1.

In the remainder of this problem, we will work with the specific problem instance with
data

A =

 1 1 0
0 1 1
0 0 1

 , B =

 0
0.5
1

 , C =
[
−1 0 1

]
,

T = 100, and Umax = 0.1. The desired output trajectory is given by

ydes(t) =


0 t < 30,
10 30 ≤ t < 70,
0 t ≥ 70.

(a) Find the optimal input u?, and the associated optimal cost J?.

(b) Rolling look-ahead. Now consider the input obtained using an MPC-like method:
At time t, we find the values u(t), . . . , u(t+N − 1) that minimize

t+N∑
τ=t+1

‖y(τ)− ydes(τ)‖2
2,

subject to ‖u(τ)‖∞ ≤ Umax, τ = t, . . . , t + N − 1, and the state dynamics, with
x(t) fixed at its current value. We then use u(t) as the input to the system. (This
is an informal description, but you can figure out what we mean.)

In a tracking context, we call N the amount of look-ahead, since it tells us how
much of the future of the desired output signal we are allowed to access when we
decide on the current input.

Find the input signal for look-ahead values N = 8, N = 10, and N = 12. Compare
the cost J obtained in these three cases to the optimal cost J? found in part (a).

Plot the output y(t) for N = 8, N = 10, and N = 12.

56

14 Branch and bound

14.1 Branch and bound for partitioning. We consider the two-way partitioning problem (see
pages 219, 226, and 285 in the book),

minimize xTWx
subject to x2

i = 1, i = 1, . . . , n.

We can, without any loss of generality, assume that x1 = 1.

You will perform several iterations of branch and bound for a random instance of this
problem, with, say, n = 100.

To run branch and bound, you’ll need to find lower and upper bounds on the optimal
value of the partitioning problem, with some of the variables fixed to given values, i.e.,

minimize xTWx
subject to x2

i = 1, i = 1, . . . , n
xi = xfixed

i , i ∈ F ,

where F ⊆ {1, . . . , n} is the set of indices of the fixed entries of x, and xfixed
i ∈ {−1, 1}

are the associated values.

Lower bound. To get a lower bound, you will solve the SDP

minimize Tr(WX)
subject to Xii = 1, i = 1, . . . , n[

X x
xT 1

]
� 0

xi = xfixed
i , i ∈ F ,

with variables X ∈ Sn, x ∈ Rn. (If we add the constraint that the (n + 1) × (n + 1)
matrix above is rank one, then X = xxT , and this problem gives the exact solution.)

Upper bound. To get an upper bound we’ll find a feasible point x̂, and evaluate its
objective. To do this, we solve the SDP relaxation above, and find an eigenvector v
associated with the largest eigenvalue of the (n+ 1)× (n+ 1) matrix appearing in the
inequality. Choose x̂i = sign(vn+1)sign(vi) for i = 1, . . . , n.

Branch and bound. Develop a partial binary tree for this problem, as on page 21 of
the lecture slides. Use n = 100. At each node, record upper and lower bounds. Along
each branch, indicate on which variable you split. At each step, develop the node with
the smallest lower bound. Develop four nodes.

You can do this ‘by hand’; you do not need to write a complete branch and bound code
in Matlab (which would not be a pretty sight). You can use CVX to solve the SDPs,
and manually constrain some variables to fixed values.

57

15 Semidefinite relaxations and nonconvex problems

15.1 Semidefinite representations of nuclear norms Recall that for a matrix A ∈ Rm×n with
singular value decomposition A = UΣV T , the nuclear norm ‖A‖∗ =

∑
i σi(A) is the

sum of singular values of A. Give a semidefinite representation of ‖A‖∗, that is, write

‖A‖∗ = inf
X
{Tr(CX) | X � 0,Lin(A,X) � 0}

where X is a positive semidefinite matrix (whose size you must specify) and Lin is a
linear function in its arguments that you must specify. Hint: consider the matrix[

0 A
AT 0

]
,

where the 0 values are appropriately sized.

15.2 Approximation of sets by lifts and randomization. In this question, we explore the
possibilities for constructing random vectors that satisfy various (convex or non-convex)
quadratic equalities with high probability.

Let X+ be a semidefinite lift of X , meaning that it is compact, has non-empty relative
interior, and satisfies

X+ ⊃ SHull(X) := Co{xxT | x ∈ X}.

For a collection of matrices C ⊂ Sn, we say that X+ approximates X over C if (i) there
exists a constant ν <∞ such that for all C ∈ C,

sup
x∈X

xTCx ≤ sup
X∈X+

Tr(CX) ≤ ν sup
x∈X

xTCx (9)

and for any matrix X ∈ X+, for t ≥ 0 we have

Prob
(
ZZT 6∈ t · X+

)
≤ K exp (−ct) where Z ∼ N (0, X). (10)

for constants K, c ∈ R++. As in the lecture on semidefinite relaxations, this means
that for X ∈ X+, by drawing from a Gaussian distribution we are likely to get a vector
Z “near enough” X .

A standard result, which is useful for showing both conditions (9) and (10), is the
following. Let Z ∼ N (0, I). Then for any matrix A,

Prob(‖AZ‖2
2 ≥ Tr(ATA)(1 + 2

√
t+ 2t)) ≤ e−t (11)

for all t ≥ 0.

(a) Suppose X = {x ∈ Rn | ‖x‖2 = 1}. Show that X+ = {X ∈ Sn | X � 0,Tr(X) =
1} satisfies the approximation condition (9) with ν = 1 for all C ⊂ Sn.

58

We say that a set X is ellipse-like if it has representation

X =
{
x ∈ Rn | xTSkx ≤ 1, k = 1, . . . ,m

}
where the matrices Sk ∈ Sn+, not necessarily positive definite, with

∑
k Sk � 0.

(b) Let X be ellipse-like and define the set

X+ :=
{
X ∈ Sn+ | Tr(SkX) ≤ 1, k = 1, . . . ,m

}
. (12)

Show that X+ is compact, convex, and has non-empty interior.

(c) Show that if X ∈ X+ as in Eq. (12), then for Z ∼ N (0, X), we have

Prob
(
there is k ∈ {1, . . . ,m} s.t. ZTSkZ ≥ Tr(SkX) · (1 + t)

)
≤ Ke−ct

for all t ≥ 0, where you should specifyK, c. Argue that this implies inequality (10).

(d) Suppose X is ellipse-like and X+ is as in Eq. (12) and assume X+ satisfies inequal-
ity (10). Show the approximation guarantees

sup
x∈X

xTCx ≤ sup
X∈X+

Tr(CX) ≤ inf
t≥0

{
t sup
x∈X

xTCx+
m

λmin

√
2 ‖C‖2

Fr + ‖C‖2
∗ ·
√
Ke−ct/2

}
where ‖·‖∗ is the nuclear norm and λmin = λmin(

∑
k Sk) is the minimal eigenvalue

of
∑

k Sk. If in addition C � 0 and X includes the sphere {x : ‖x‖2 = 1} give an
upper bound of the form (9) where ν depends only logarithmically on m, n, and
λmin.

15.3 Near optimal linear estimators. Let x ∈ X ⊂ Rn and A ∈ Rm×n, and consider the
problem of estimating a vector x given a noisy observation of the form

y = Ax+ ξ

for ξ ∼ N (0, Q), the normal distribution with covariance Q. We measure the quality
of an estimator x̂ by its worst-case risk, which is the supremum over all x ∈ X of its
expected loss, that is,

sup
x∈X

E[‖x− x̂(Ax+ ξ)‖2],

where ‖·‖ is the `2-norm. The linear optimal risk is the best worst-case risk of a linear
estimator of x based on the observation Ax+ ξ.

RiskLin(X , Q) := inf
H

sup
x∈X

E
[
‖H(Ax+ ξ)− x‖2

]
,

where ξ ∼ N (0, Q).

59

(a) Assume that the set X+ ⊂ Sn+ is a semidefinite lift of X and approximates X as
in the conditions (9) and (10). Give the tightest upper bound you can on

sup
x∈X

E
[
‖H(Ax+ ξ)− x‖2

]
,

writing the result as a semidefinite problem (where you may treat the constraint
X ∈ X+ as an abstract semidefinite constraint).

Using your formulation, write an optimization problem for finding a (near) optimal
H as in the definition of RiskLin.

(b) Argue that if X = Rn and Q � 0, then the optimal H = (ATQ−1A)−1ATQ−1.

(c) We now consider the set of box constraints

X = {x ∈ Rn | ‖x‖∞ ≤ 1}.

Show how to write this constraint in the ellipse-like form of question 15.2, that is,
as ∩k{x ∈ Rn | xTSkx ≤ 1} for matrices Sk � 0 with

∑
k Sk � 0. What is the set

X+ = ∩k{X ∈ Sn+ | Tr(XSk) ≤ 1}?
(d) Generate a matrix A ∈ Rm×n, where m = 50 and n = 25, with i.i.d. standard

normal entries. Using CVX, solve the optimization problem from part (a) with
the choice Q = I, the identity, so the noise is ξ ∼ N (0, Q), and the choice X+ is
the uncertainty set from part (c). Write down an explicit SDP that you minimize
to find H.

Let H? be the solution to your SDP (from CVX), and let Ĥ = (ATA)−1AT be an
alternative possibility.

For each of H? and Ĥ, find the X solving your relaxation from part (a), calling
them X? and X̂. Now, generate 100 sample draws Z ∼ N (0, X?) and Z ∼
N (0, X̂), set x̂ = sign(Z) for each, and compare the risk of H? and Ĥ on x̂ for each
of the sampling distributions, that is, E[‖H(Ax̂+ ξ)− x̂‖2]. Plot 4 histograms of
the attained risk values, one for each of the pairings H? with N (0, X?), Ĥ with
N (0, X?), H? with N (0, X̂), and Ĥ with N (0, X̂). What do you observe?

60

	Subgradients
	Generalized subgradients
	Subgradient methods
	Stochastic subgradient methods
	Localization methods
	Decomposition methods
	Monotone operators and operator splitting
	ADMM
	Sequential convex programming
	Conjugate-gradient and truncated Newton methods
	1 methods for convex-cardinality problems
	Optimization with uncertain data
	Model predictive control
	Branch and bound
	Semidefinite relaxations and nonconvex problems

