EE364b Prof. M. Pilanci

EE364b Spring 2023 Homework 5

Due Sunday 5/14 at 11:59pm via Gradescope

5.1 (11 points) So you think ADMM is fast, huh?

Consider a regression problem with a data matrix $X \in \mathbb{R}^{n \times (p+1)}$), where each column represents a predictor. Suppose that the matrix X is split into J groups over its columns:

$$X = [\vec{1} X_{(1)} X_{(2)} \dots X_{(J)}]$$

where $\vec{1} = [1 \ 1 \dots 1] \in \mathbb{R}^n$ is a vector of all ones. The groups are typically determined by the types of predictors. To achieve sparsity over the groups rather than individual predictors, we may write $\beta = (\beta_0, \beta_{(1)}, \dots, \beta_{(J)})$, where β_0 is an intercept term and each $\beta_{(j)}$ is an appropriate coefficient block of β corresponding to $X_{(j)}$, and solve the regularized optimization problem:

$$\min_{\beta \in \mathbb{R}^{p+1}} f(\beta) + h(\beta).$$

Here $h(\beta)$ is a convex regularization term to promote the sparsity over groups. In this problem, we will use group Lasso to predict the Parkinson's disease (PD) symptom score on the Parkinsons dataset¹. The PD symptom score is measured on the unified Parkinson's disease rating scale (UPDRS). This data contains 5, 785 observations, 18 predictors (provided in \mathbf{X} -train.csv), and an outcome - the total UPDRS (provided in \mathbf{y} -train.csv)

The 18 columns in the predictor matrix have the following groupings (in column ordering):

- age: Subject age in years
- sex: Subject gender, 0-male, 1-female
- Jitter(%), Jitter(Abs), Jitter:RAP, Jitter:PPQ5, Jitter:DDP: Several measures of variation in fundamental frequency of voice
- Shimmer, Shimmer(dB), Shimmer:APQ3, Shimmer:APQ5, Shimmer:APQ11, Shimmer:DDA: Several measures of variation in amplitude of voice
- NHR, HNR: Two measures of ratio of noise to tonal components in the voice
- RPDE: A nonlinear dynamical complexity measure
- DFA: Signal fractal scaling exponent
- PPE: A nonlinear measure of fundamental frequency variation

¹'Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection', Little MA, McSharry PE, Roberts SJ, Costello DAE, Moroz IM. BioMedical Engineering Online 2007, 6:23 (26 June 2007)

We consider the group LASSO problem, where $h(\beta) = \lambda \sum_{j} w_{j} \|\beta_{(j)}\|_{2}$:

$$\min_{\beta \in \mathbb{R}^{p+1}} \frac{1}{2n} \|X\beta - y\|_2^2 + \lambda \sum_j w_j \|\beta_{(j)}\|_2 \tag{1}$$

A typical choice for weights on groups w_j is $\sqrt{p_j}$, where p_j is number of predictors that belong to the jth group, to account for the group sizes. We will solve the problem using both ADMM and proximal gradient descent method.

- (a) (1 point) Derive the proximal operator for the convex function $h(z) = \lambda \sum_{j} w_{j} ||z_{(j)}||_{2}$.
- (b) (1 point) Derive the ADMM updates for Eq. (1) and Eq. (2) as described in the lecture slides (page 17, link). Hint: You can let $h(\alpha) = \lambda \sum_j w_j \|\alpha_{(j)}\|_2$, and rewrite the original objective as $f(z) + h(\alpha)$ with the consensus constraint $\alpha = z$.
- (c) (1 point) Implement ADMM to solve the least squares group lasso problem on the Parkinsons dataset. You may use the implementation template we have provided you in hw5_q1_template.py. Set $\lambda = 0.02$.
- (d) (1 point) Derive the proximal gradient method updates for Eq. (1) as described in the lecture slides (page 20, link).
- (e) (1 point) Implement proximal gradient descent to solve least squares group lasso problem on the Parkinsons dataset. You may start from the code template we have provided. Do not implement line-search, acceleration, or restarts as part of this question. Set $\lambda = 0.02$, use a fixed step-size t = 0.5, and initialize at $\beta^0 = 0$.
- (f) (1 point) Plot $f^k f^*$ versus k for the first 10000 iterations on a semi-log scale for both methods for the training data, where f^k denotes the objective value at step k, and the optimal objective value is $f^* = 49.9649$. Print the components of the solutions numerically. Which groups are selected, i.e., non-zero at the solution?
- (g) (1 point) ADMM is much faster than naive proximal-gradient descent, partially because a fixed step-size is sub-optimal. Implement the following line-search condition [BT09]:

$$f(\beta^{k+1}) \le f(\beta^k) + \langle \nabla f(\beta^k), \beta^{k+1} - \beta^k \rangle + \frac{1}{2t^k} \left\| \beta^{k+1} - \beta^k \right\|_2^2.$$

If this condition holds, we accept step-size t^k . If it fails, reduce the step-size as $t^k \leftarrow t^k \cdot \gamma$, where $\gamma = 0.8$ is a backtracking parameter, and try the proximal-gradient update again.

We also want a way to increase the step-size across iterations. This allows the method to adapt to local smoothness of the objective. After every successful iteration, initialize the step-size for the next iteration $t^{k+1} \leftarrow t^k/\gamma$. Initialize the first step-size at $t^0 = 10$ and add PGD with line-search (PGD-LS) to the comparison figure.

(h) (1 point) Augment PGD-LS with acceleration to obtain the FISTA algorithm [BT09]. In particular, modify the update to the following:

$$\begin{split} \beta^{k+1} &= \operatorname{Prox}_h(v^k - t^k \nabla f(v^k)) \\ \xi^{k+1} &= 1 + \frac{1}{2} (1 + 4(\xi^k)^2)^{1/2} \\ v^{k+1} &= \beta^{k+1} + \frac{\xi^k - 1}{\xi^{k+1}} (\beta^{k+1} - \beta^k), \end{split}$$

where $v^0 = \beta^0$ and $\xi^0 = 1$. Note that setting $v^{k+1} = \beta^{k+1}$ reduces to regular proximal-gradient descent.

Hint: The line-search condition should be evaluated at β^{k+1} and v^k , since it applies only to the proximal-gradient step and cannot take into account the extrapolation. We will handle the extrapolation in the next part.

Hint 2: You should observe a periodic change in the training objective for FISTA. This is characteristic of the method and not a bug.

(i) (1 point) We can do even better by adding restarts to FISTA. Restarts reset $v^{k+1} = \beta^{k+1}$ and $\xi^{k+1} = 1$ to adapt to local curvature of the objective. Perform a restart whenever

$$\langle \beta^{k+1} - \beta^k, v^k - \beta^{k+1} \rangle \ge 0.$$

The vector $v^k - \beta^{k+1}$ is called the proximal gradient mapping and has similar properties to the negative gradient; this rule checks whether the accelerated update is a descent direction with respect to the proximal gradient mapping. Implement restarts and add restarted FISTA (R-FISTA) to your comparison.

(j) (1 point) The PCA whitening of $X_{(i)}$ is given by

$$\tilde{X}_{(i)} = X_{(i)}U\Lambda^{-1/2},$$

where $U\Lambda U^{\top} = X_{(i)}^{\top} X_{(i)}$ is the eigendecomposition of $X_{(i)}^{\top} X_{(i)}$. Show $\tilde{X}_{(i)}^{\top} \tilde{X}_{(i)} = I$ and that Eq. (1) with PCA whitened data is equivalent to the following problem:

$$\min_{z \in \mathbb{R}^{J \cdot n}} \frac{1}{2n} \| \sum_{i} z - y \|_{2}^{2} + \lambda \sum_{i} w_{j} \| z_{(j)} \|_{2} \quad \text{s.t.} \quad z_{(i)} \in \text{Range}(X_{(i)}), i \in [J]. \quad (2)$$

Describe how to recover the optimal weights $\beta_{(i)}^*$ from the optimal group predictions $z_{(i)}^*$. When is Eq. (2) a more desirable objective to minimize than Eq. (1) and when is it less desirable?

(k) (1 point) Implement PCA whitening and solve the whitened version of Eq. (1) (do **not** to solve Eq. (2)). Use the same regularization parameter as before ($\lambda = 0.02$). How many blocks are active in the final solution? What does this imply about the effects of whitening on regularization? Should we use whitening for the Parkinsons dataset?

- 5.2 (5 points) Proximal operators of activation functions. Consider the convex function $f(x) = \max(x, 0)$ for $x \in \mathbf{R}$. f is the ReLU function, which is a popular activation function for neural networks.
 - (a) Describe the subdifferential operator $F(x) = \{(x, \partial f(x)) : x \in \mathbf{R}\}$ and plot its graph.
 - (b) Find the resolvent operator $(I + \lambda F)^{-1}(x)$ using the graphical method using the graphical approach outlined in the lecture slides and plot its graph.
 - (c) Find the proximal operator of f directly using its definition and verify that it matches with the resolvent operator in part (b).
 - (d) Let $\phi(x)$ be a convex function with proximal operator $\mathbf{prox}_{\lambda\phi}(v)$, where $x, v \in \mathbf{R}$, and define $h(x) = \phi(x) + c_1 x + c_2$. Show that $\mathbf{prox}_{\lambda h}(v) = \mathbf{prox}_{\lambda\phi}(v \lambda c_1)$.
 - (e) Another popular activation function for neural networks is the Leaky ReLU function, which can be defined as $g_a(x) = \max(ax, x)$ when 0 < a < 1. Derive the proximal operator of g_a when 0 < a < 1. Hint: You may find the results of parts (c) and (d) useful.
- 5.3 (7 points) Solving LPs via alternating projections. Consider an LP in standard form,

minimize
$$c^T x$$

subject to $Ax = b$
 $x \succeq 0$,

with variable $x \in \mathbf{R}^n$, and where $A \in \mathbf{R}^{m \times n}$. A tuple $(x, \nu, \lambda) \in \mathbf{R}^{2n+m}$ is primal-dual optimal if and only if

$$Ax = b$$
, $x \succeq 0$, $-A^T \nu + \lambda = c$, $\lambda \succeq 0$, $c^T x + b^T \nu = 0$.

These are the KKT optimality conditions of the LP. The last constraint, which states that the duality gap is zero, can be replaced with an equivalent condition, $\lambda^T x = 0$, which is complementary slackness.

- (a) (1 point) Let $z = (x, \nu, \lambda)$ denote the primal-dual variable. Express the optimality conditions as $z \in \mathcal{A} \cap \mathcal{C}$, where \mathcal{A} is an affine set, and \mathcal{C} is a simple cone. Give \mathcal{A} as $\mathcal{A} = \{z \mid Fz = g\}$, for appropriate F and g.
- (b) (1 point) Explain how to compute the Euclidean projections onto \mathcal{A} and also onto \mathcal{C} .
- (c) (2 points) Implement alternating projections to solve the standard form LP. Use $z^{k+1/2}$ to denote the iterate after projection onto \mathcal{A} , and z^{k+1} to denote the iterate after projection onto \mathcal{C} . Your implementation should exploit factorization caching in the projection onto \mathcal{A} , but you don't need to worry about exploiting structure in the matrix F.

Test your solver on a problem instance with m = 100, n = 500. Plot the residual $||z^{k+1} - z^{k+1/2}||_2$ over 1000 iterations. (This should converge to zero, although perhaps slowly.)

Here is a simple method to generate LP instances that are feasible. First, generate a random vector $\omega \in \mathbf{R}^n$. Let $x^* = \max\{\omega, 0\}$ and $\lambda^* = \max\{-\omega, 0\}$, where the maximum is taken elementwise. Choose $A \in \mathbf{R}^{m \times n}$ and $\nu^* \in \mathbf{R}^m$ with random entries, and set $b = Ax^*$, $c = -A^T\nu^* + \lambda^*$. This gives you an LP instance with optimal value c^Tx^* .

(d) (3 points) Implement Dykstra's alternating projection method as shown in the lecture slides and try it on the same problem instances from part (c). Verify that you obtain a speedup, and plot the same residual as in part (c).

References

[BT09] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.