
EE364b Prof. M. Pilanci

EE364b Spring 2023 Homework 5
Due Sunday 5/14 at 11:59pm via Gradescope

5.1 (11 points) So you think ADMM is fast, huh?
Consider a regression problem with a data matrix X ∈ Rn×(p+1)), where each column
represents a predictor. Suppose that the matrix X is split into J groups over its
columns:

X = [⃗1 X(1) X(2) . . . X(J)]

where 1⃗ = [1 1 . . . 1] ∈ Rn is a vector of all ones. The groups are typically determined
by the types of predictors. To achieve sparsity over the groups rather than individual
predictors, we may write β = (β0, β(1), . . . , β(J)), where β0 is an intercept term and
each β(j) is an appropriate coefficient block of β corresponding to X(j), and solve the
regularized optimization problem:

min
β∈Rp+1

f(β) + h(β).

Here h(β) is a convex regularization term to promote the sparsity over groups. In this
problem, we will use group Lasso to predict the Parkinson’s disease (PD) symptom
score on the Parkinsons dataset1. The PD symptom score is measured on the unified
Parkinson’s disease rating scale (UPDRS). This data contains 5, 785 observations, 18
predictors (provided in X train.csv), and an outcome - the total UPDRS (provided
in y train.csv)

The 18 columns in the predictor matrix have the following groupings (in column or-
dering):

• age: Subject age in years

• sex: Subject gender, 0–male, 1–female

• Jitter(%), Jitter(Abs), Jitter:RAP, Jitter:PPQ5, Jitter:DDP: Several measures of
variation in fundamental frequency of voice

• Shimmer, Shimmer(dB), Shimmer:APQ3, Shimmer:APQ5, Shimmer:APQ11, Shim-
mer:DDA: Several measures of variation in amplitude of voice

• NHR, HNR: Two measures of ratio of noise to tonal components in the voice

• RPDE: A nonlinear dynamical complexity measure

• DFA: Signal fractal scaling exponent

• PPE: A nonlinear measure of fundamental frequency variation

1’Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection’, Little
MA, McSharry PE, Roberts SJ, Costello DAE, Moroz IM. BioMedical Engineering Online 2007, 6:23 (26
June 2007)
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We consider the group LASSO problem, where h(β) = λ
∑

j wj∥β(j)∥2:

min
β∈Rp+1

1

2n
∥Xβ − y∥22 + λ

∑
j

wj∥β(j)∥2 (1)

A typical choice for weights on groups wj is
√
pj , where pj is number of predictors

that belong to the jth group, to account for the group sizes. We will solve the problem
using both ADMM and proximal gradient descent method.

(a) (1 point) Derive the proximal operator for the convex function h(z) = λ
∑

j wj∥z(j)∥2.
(b) (1 point) Derive the ADMM updates for Eq. (1) and Eq. (2) as described in the

lecture slides (page 17, link).
Hint: You can let h(α) = λ

∑
j wj∥α(j)∥2, and rewrite the original objective as

f(z) + h(α) with the consensus constraint α = z.

(c) (1 point) Implement ADMM to solve the least squares group lasso problem on the
Parkinsons dataset. You may use the implementation template we have provided
you in hw5 q1 template.py. Set λ = 0.02.

(d) (1 point) Derive the proximal gradient method updates for Eq. (1) as described
in the lecture slides (page 20, link).

(e) (1 point) Implement proximal gradient descent to solve least squares group lasso
problem on the Parkinsons dataset. You may start from the code template we
have provided. Do not implement line-search, acceleration, or restarts as part of
this question. Set λ = 0.02, use a fixed step-size t = 0.5, and initialize at β0 = 0.

(f) (1 point) Plot fk−f ∗ versus k for the first 10000 iterations on a semi-log scale for
both methods for the training data, where fk denotes the objective value at step
k, and the optimal objective value is f ∗ = 49.9649. Print the components of the
solutions numerically. Which groups are selected, i.e., non-zero at the solution?

(g) (1 point) ADMM is much faster than naive proximal-gradient descent, partially
because a fixed step-size is sub-optimal. Implement the following line-search con-
dition [BT09]:

f(βk+1) ≤ f(βk) + ⟨∇f(βk), βk+1 − βk⟩+ 1

2tk
∥∥βk+1 − βk

∥∥2

2
.

If this condition holds, we accept step-size tk. If it fails, reduce the step-size as
tk ← tk · γ, where γ = 0.8 is a backtracking parameter, and try the proximal-
gradient update again.

We also want a way to increase the step-size across iterations. This allows the
method to adapt to local smoothness of the objective. After every successful
iteration, initialize the step-size for the next iteration tk+1 ← tk/γ. Initialize
the first step-size at t0 = 10 and add PGD with line-search (PGD-LS) to the
comparison figure.
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(h) (1 point) Augment PGD-LS with acceleration to obtain the FISTA algorithm
[BT09]. In particular, modify the update to the following:

βk+1 = Proxh(v
k − tk∇f(vk))

ξk+1 = 1 +
1

2
(1 + 4(ξk)2)1/2

vk+1 = βk+1 +
ξk − 1

ξk+1
(βk+1 − βk),

where v0 = β0 and ξ0 = 1. Note that setting vk+1 = βk+1 reduces to regular
proximal-gradient descent.

Hint: The line-search condition should be evaluated at βk+1 and vk, since it
applies only to the proximal-gradient step and cannot take into account the ex-
trapolation. We will handle the extrapolation in the next part.

Hint 2: You should observe a periodic change in the training objective for FISTA.
This is characteristic of the method and not a bug.

(i) (1 point) We can do even better by adding restarts to FISTA. Restarts reset
vk+1 = βk+1 and ξk+1 = 1 to adapt to local curvature of the objective. Perform a
restart whenever

⟨βk+1 − βk, vk − βk+1⟩ ≥ 0.

The vector vk−βk+1 is called the proximal gradient mapping and has similar prop-
erties to the negative gradient; this rule checks whether the accelerated update
is a descent direction with respect to the proximal gradient mapping. Implement
restarts and add restarted FISTA (R-FISTA) to your comparison.

(j) (1 point) The PCA whitening of X(i) is given by

X̃(i) = X(i)UΛ−1/2,

where UΛU⊤ = X⊤
(i)X(i) is the eigendecomposition of X⊤

(i)X(i). Show X̃⊤
(i)X̃(i) = I

and that Eq. (1) with PCA whitened data is equivalent to the following problem:

min
z∈RJ·n

1

2n

∥∥∑
i

z − y
∥∥2

2
+ λ

∑
j

wj∥z(j)∥2 s.t. z(i) ∈ Range(X(i)), i ∈ [J ]. (2)

Describe how to recover the optimal weights β∗
(i) from the optimal group predic-

tions z∗(i). When is Eq. (2) a more desirable objective to minimize than Eq. (1)
and when is it less desirable?

(k) (1 point) Implement PCA whitening and solve the whitened version of Eq. (1) (do
not to solve Eq. (2)). Use the same regularization parameter as before (λ = 0.02).

How many blocks are active in the final solution? What does this imply about the
effects of whitening on regularization? Should we use whitening for the Parkinsons
dataset?
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5.2 (5 points) Proximal operators of activation functions. Consider the convex function
f(x) = max(x, 0) for x ∈ R. f is the ReLU function, which is a popular activation
function for neural networks.

(a) Describe the subdifferential operator F (x) = {(x, ∂f(x)) : x ∈ R} and plot its
graph.

(b) Find the resolvent operator (I + λF )−1(x) using the graphical method using the
graphical approach outlined in the lecture slides and plot its graph.

(c) Find the proximal operator of f directly using its definition and verify that it
matches with the resolvent operator in part (b).

(d) Let ϕ(x) be a convex function with proximal operator proxλϕ(v), where x, v ∈ R,
and define h(x) = ϕ(x) + c1x+ c2. Show that proxλh(v) = proxλϕ(v − λc1).

(e) Another popular activation function for neural networks is the Leaky ReLU func-
tion, which can be defined as ga(x) = max(ax, x) when 0 < a < 1. Derive the
proximal operator of ga when 0 < a < 1. Hint: You may find the results of parts
(c) and (d) useful.

5.3 (7 points) Solving LPs via alternating projections. Consider an LP in standard form,

minimize cTx
subject to Ax = b

x ⪰ 0,

with variable x ∈ Rn, and where A ∈ Rm×n. A tuple (x, ν, λ) ∈ R2n+m is primal-dual
optimal if and only if

Ax = b, x ⪰ 0, −ATν + λ = c, λ ⪰ 0, cTx+ bTν = 0.

These are the KKT optimality conditions of the LP. The last constraint, which states
that the duality gap is zero, can be replaced with an equivalent condition, λTx = 0,
which is complementary slackness.

(a) (1 point) Let z = (x, ν, λ) denote the primal-dual variable. Express the optimality
conditions as z ∈ A∩ C, where A is an affine set, and C is a simple cone. Give A
as A = {z | Fz = g}, for appropriate F and g.

(b) (1 point) Explain how to compute the Euclidean projections onto A and also onto
C.

(c) (2 points) Implement alternating projections to solve the standard form LP. Use
zk+1/2 to denote the iterate after projection onto A, and zk+1 to denote the iterate
after projection onto C. Your implementation should exploit factorization caching
in the projection onto A, but you don’t need to worry about exploiting structure
in the matrix F .
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Test your solver on a problem instance with m = 100, n = 500. Plot the residual
∥zk+1 − zk+1/2∥2 over 1000 iterations. (This should converge to zero, although
perhaps slowly.)

Here is a simple method to generate LP instances that are feasible. First, generate
a random vector ω ∈ Rn. Let x⋆ = max{ω, 0} and λ⋆ = max{−ω, 0}, where the
maximum is taken elementwise. Choose A ∈ Rm×n and ν⋆ ∈ Rm with random
entries, and set b = Ax⋆, c = −ATν⋆ + λ⋆. This gives you an LP instance with
optimal value cTx⋆.

(d) (3 points) Implement Dykstra’s alternating projection method as shown in the
lecture slides and try it on the same problem instances from part (c). Verify that
you obtain a speedup, and plot the same residual as in part (c).
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