ℓ_1-Norm Methods for Convex-Cardinality Problems

Stephen Boyd

Prof. S. Boyd, EE364b, Stanford University
Outline

• problems involving cardinality
• the ℓ_1-norm heuristic
• convex relaxation and convex envelope interpretations
• examples
• recent results
• total variation
• iterated weighted ℓ_1 heuristic
• matrix rank constraints
\textbf{ℓ_1-norm heuristics for cardinality problems}

- cardinality problems arise often, but are hard to solve exactly

- a simple heuristic, that relies on ℓ_1-norm, seems to work well

- used for many years, in many fields
 - sparse design
 - LASSO, robust estimation in statistics
 - support vector machine (SVM) in machine learning
 - total variation reconstruction in signal processing, geophysics
 - compressed sensing

- recent theoretical results guarantee the method works, at least for a few problems
Cardinality

- the **cardinality** of $x \in \mathbb{R}^n$, denoted $\text{card}(x)$, is the number of nonzero components of x
- card is separable; for scalar x, $\text{card}(x) = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases}$
- card is quasiconcave on \mathbb{R}_+^n (but not \mathbb{R}^n) since
 \[\text{card}(x + y) \geq \min\{\text{card}(x), \text{card}(y)\} \]
 holds for $x, y \succeq 0$
- but otherwise has no convexity properties
- arises in many problems
General convex-cardinality problems

A convex-cardinality problem is one that would be convex, except for appearance of \text{card} in objective or constraints.

Examples (with C, f convex):

- Convex minimum cardinality problem:
 \[
 \begin{align*}
 \text{minimize} & \quad \text{card}(x) \\
 \text{subject to} & \quad x \in C
 \end{align*}
 \]

- Convex problem with cardinality constraint:
 \[
 \begin{align*}
 \text{minimize} & \quad f(x) \\
 \text{subject to} & \quad x \in C, \quad \text{card}(x) \leq k
 \end{align*}
 \]
Solving convex-cardinality problems

convex-cardinality problem with $x \in \mathbb{R}^n$

• if we fix the sparsity pattern of x (i.e., which entries are zero/nonzero) we get a convex problem

• by solving 2^n convex problems associated with all possible sparsity patterns, we can solve convex-cardinality problem (possibly practical for $n \leq 10$; not practical for $n > 15$ or so . . .)

• general convex-cardinality problem is (NP-) hard

• can solve globally by branch-and-bound
 – can work for particular problem instances (with some luck)
 – in worst case reduces to checking all (or many of) 2^n sparsity patterns
Boolean LP as convex-cardinality problem

- Boolean LP:
 \[
 \begin{align*}
 \text{minimize} & \quad c^T x \\
 \text{subject to} & \quad Ax \preceq b, \quad x_i \in \{0, 1\}
 \end{align*}
\]

 includes many famous (hard) problems, e.g., 3-SAT, traveling salesman

- can be expressed as

 \[
 \begin{align*}
 \text{minimize} & \quad c^T x \\
 \text{subject to} & \quad Ax \preceq b, \quad \text{card}(x) + \text{card}(1 - x) \leq n
 \end{align*}
\]

 since \(\text{card}(x) + \text{card}(1 - x) \leq n \iff x_i \in \{0, 1\} \)

- conclusion: general convex-cardinality problem is hard
Sparse design

minimize $\text{card}(x)$
subject to $x \in \mathcal{C}$

• find sparsest design vector x that satisfies a set of specifications

• zero values of x simplify design, or correspond to components that aren’t even needed

• examples:
 – FIR filter design (zero coefficients reduce required hardware)
 – antenna array beamforming (zero coefficients correspond to unneeded antenna elements)
 – truss design (zero coefficients correspond to bars that are not needed)
 – wire sizing (zero coefficients correspond to wires that are not needed)
Sparse modeling / regressor selection

fit vector \(b \in \mathbb{R}^m \) as a linear combination of \(k \) regressors (chosen from \(n \) possible regressors)

\[
\begin{align*}
\text{minimize} & \quad \|Ax - b\|_2 \\
\text{subject to} & \quad \text{card}(x) \leq k
\end{align*}
\]

- gives \(k \)-term model
- chooses subset of \(k \) regressors that (together) best fit or explain \(b \)
- can solve (in principle) by trying all \(\binom{n}{k} \) choices
- variations:
 - minimize \(\text{card}(x) \) subject to \(\|Ax - b\|_2 \leq \epsilon \)
 - minimize \(\|Ax - b\|_2 + \lambda \text{card}(x) \)
Sparse signal reconstruction

• estimate signal x, given

 – noisy measurement $y = Ax + v$, $v \sim \mathcal{N}(0, \sigma^2 I)$ (A is known; v is not)
 – prior information $\text{card}(x) \leq k$

• maximum likelihood estimate \hat{x}_{ml} is solution of

\[
\begin{align*}
\text{minimize} & \quad \|Ax - y\|_2 \\
\text{subject to} & \quad \text{card}(x) \leq k
\end{align*}
\]
Estimation with outliers

- we have measurements $y_i = a_i^T x + v_i + w_i$, $i = 1, \ldots, m$
- noises $v_i \sim \mathcal{N}(0, \sigma^2)$ are independent
- only assumption on w is sparsity: $\text{card}(w) \leq k$
- $\mathcal{B} = \{ i \mid w_i \neq 0 \}$ is set of bad measurements or outliers
- maximum likelihood estimate of x found by solving

 $\begin{align*}
 \text{minimize} & \quad \sum_{i \not\in \mathcal{B}} (y_i - a_i^T x)^2 \\
 \text{subject to} & \quad |\mathcal{B}| \leq k
 \end{align*}$

 with variables x and $\mathcal{B} \subseteq \{1, \ldots, m\}$
- equivalent to

 $\begin{align*}
 \text{minimize} & \quad \|y - Ax - w\|_2^2 \\
 \text{subject to} & \quad \text{card}(w) \leq k
 \end{align*}$
Minimum number of violations

• set of convex inequalities

\[f_1(x) \leq 0, \ldots, f_m(x) \leq 0, \quad x \in C \]

• choose \(x \) to minimize the number of violated inequalities:

\[
\begin{align*}
\text{minimize} & \quad \text{card}(t) \\
\text{subject to} & \quad f_i(x) \leq t_i, \quad i = 1, \ldots, m \\
& \quad x \in C, \quad t \geq 0
\end{align*}
\]

• determining whether zero inequalities can be violated is (easy) convex feasibility problem
Linear classifier with fewest errors

• given data \((x_1, y_1), \ldots, (x_m, y_m) \in \mathbb{R}^n \times \{-1, 1\}\)

• we seek linear (affine) classifier \(y \approx \text{sign}(w^T x + v)\)

• classification error corresponds to \(y_i(w^T x + v) \leq 0\)

• to find \(w, v\) that give fewest classification errors:

\[
\begin{align*}
\text{minimize} & \quad \text{card}(t) \\
\text{subject to} & \quad y_i(w^T x_i + v) + t_i \geq 1, \quad i = 1, \ldots, m
\end{align*}
\]

with variables \(w, v, t\) (we use homogeneity in \(w, v\) here)
Smallest set of mutually infeasible inequalities

- given a set of mutually infeasible convex inequalities
 \[f_1(x) \leq 0, \ldots, f_m(x) \leq 0 \]

- find smallest (cardinality) subset of these that is infeasible

- certificate of infeasibility is
 \[g(\lambda) = \inf_{x} \left(\sum_{i=1}^{m} \lambda_i f_i(x) \right) \geq 1, \lambda \succeq 0 \]

- to find smallest cardinality infeasible subset, we solve

\[
\begin{align*}
\text{minimize} & \quad \text{card}(\lambda) \\
\text{subject to} & \quad g(\lambda) \geq 1, \quad \lambda \succeq 0
\end{align*}
\]

(assuming some constraint qualifications)
Portfolio investment with linear and fixed costs

- we use budget B to purchase (dollar) amount $x_i \geq 0$ of stock i
- trading fee is fixed cost plus linear cost: $\beta \text{card}(x) + \alpha^T x$
- budget constraint is $1^T x + \beta \text{card}(x) + \alpha^T x \leq B$
- mean return on investment is $\mu^T x$; variance is $x^T \Sigma x$
- minimize investment variance (risk) with mean return $\geq R_{\text{min}}$:

$$\begin{align*}
\text{minimize} & \quad x^T \Sigma x \\
\text{subject to} & \quad \mu^T x \geq R_{\text{min}}, \quad x \succeq 0 \\
& \quad 1^T x + \beta \text{card}(x) + \alpha^T x \leq B
\end{align*}$$

l_1-norm methods for convex-cardinality problems
Piecewise constant fitting

- fit corrupted x_{cor} by a piecewise constant signal \hat{x} with k or fewer jumps
- problem is convex once location (indices) of jumps are fixed
- \hat{x} is piecewise constant with $\leq k$ jumps $\iff \text{card}(D\hat{x}) \leq k$, where

$$D = \begin{bmatrix} 1 & -1 \\ 1 & -1 \\ \vdots & \vdots \\ 1 & -1 \end{bmatrix} \in \mathbb{R}^{(n-1) \times n}$$

- as convex-cardinality problem:

$$\begin{align*}
\text{minimize} & \quad \|\hat{x} - x_{\text{cor}}\|_2 \\
\text{subject to} & \quad \text{card}(D\hat{x}) \leq k
\end{align*}$$
Piecewise linear fitting

• fit x_{cor} by a piecewise linear signal \hat{x} with k or fewer kinks

• as convex-cardinality problem:

$$\begin{align*}
\text{minimize} & \quad \|\hat{x} - x_{cor}\|_2 \\
\text{subject to} & \quad \text{card}(\nabla^2 \hat{x}) \leq k
\end{align*}$$

where

$$\nabla^2 = \begin{bmatrix}
-1 & 2 & -1 \\
-1 & 2 & -1 \\
\vdots & \vdots & \vdots \\
-1 & 2 & -1
\end{bmatrix}$$
ℓ_1-norm heuristic

- replace $\text{card}(z)$ with $\gamma \|z\|_1$, or add regularization term $\gamma \|z\|_1$ to objective

- $\gamma > 0$ is parameter used to achieve desired sparsity
 (when card appears in constraint, or as term in objective)

- more sophisticated versions use $\sum_i w_i |z_i|$ or $\sum_i w_i(z_i)^+ + \sum_i v_i(z_i)^-$, where w, v are positive weights
Example: Minimum cardinality problem

• start with (hard) minimum cardinality problem

\[
\begin{align*}
\text{minimize} & \quad \text{card}(x) \\
\text{subject to} & \quad x \in C \\
\end{align*}
\]

(C convex)

• apply heuristic to get (easy) \(\ell_1 \)-norm minimization problem

\[
\begin{align*}
\text{minimize} & \quad \|x\|_1 \\
\text{subject to} & \quad x \in C \\
\end{align*}
\]
Example: Cardinality constrained problem

• start with (hard) cardinality constrained problem \((f, C \text{ convex})\)
 \[
 \begin{align*}
 &\text{minimize} & f(x) \\
 &\text{subject to} & x \in C, \quad \text{card}(x) \leq k
 \end{align*}
 \]

• apply heuristic to get (easy) \(\ell_1\)-constrained problem
 \[
 \begin{align*}
 &\text{minimize} & f(x) \\
 &\text{subject to} & x \in C, \quad \|x\|_1 \leq \beta
 \end{align*}
 \]
 or \(\ell_1\)-regularized problem
 \[
 \begin{align*}
 &\text{minimize} & f(x) + \gamma\|x\|_1 \\
 &\text{subject to} & x \in C
 \end{align*}
 \]
 \(\beta, \gamma\) adjusted so that \(\text{card}(x) \leq k\)
Polishing

- use ℓ_1 heuristic to find \hat{x} with required sparsity

- fix the sparsity pattern of \hat{x}

- re-solve the (convex) optimization problem with this sparsity pattern to obtain final (heuristic) solution
Interpretation as convex relaxation

• start with

\[
\begin{align*}
\text{minimize} & \quad \text{card}(x) \\
\text{subject to} & \quad x \in C, \quad \|x\|_\infty \leq R
\end{align*}
\]

• equivalent to mixed Boolean convex problem

\[
\begin{align*}
\text{minimize} & \quad 1^T z \\
\text{subject to} & \quad |x_i| \leq Rz_i, \quad i = 1, \ldots, n \\
& \quad x \in C, \quad z_i \in \{0, 1\}, \quad i = 1, \ldots, n
\end{align*}
\]

with variables \(x, z\)
• now relax $z_i \in \{0, 1\}$ to $z_i \in [0, 1]$ to obtain

\[
\begin{align*}
\text{minimize} & \quad 1^T z \\
\text{subject to} & \quad |x_i| \leq R z_i, \quad i = 1, \ldots, n \\
& \quad x \in C \\
& \quad 0 \leq z_i \leq 1, \quad i = 1, \ldots, n
\end{align*}
\]

which is equivalent to

\[
\begin{align*}
\text{minimize} & \quad (1/R) \|x\|_1 \\
\text{subject to} & \quad x \in C
\end{align*}
\]

the ℓ_1 heuristic

• optimal value of this problem is lower bound on original problem
Interpretation via convex envelope

- Convex envelope f_{env} of a function f on set C is the largest convex function that is an underestimator of f on C.

- $\text{epi}(f_{\text{env}}) = \text{Co}(\text{epi}(f))$.

- $f_{\text{env}} = (f^*)^*$ (with some technical conditions).

- For x scalar, $|x|$ is the convex envelope of $\text{card}(x)$ on $[-1, 1]$.

- For $x \in \mathbb{R}^n$, $(1/R)\|x\|_1$ is convex envelope of $\text{card}(x)$ on $\{z \mid \|z\|_\infty \leq R\}$.

ℓ_1-norm methods for convex-cardinality problems 23
Weighted and asymmetric ℓ_1 heuristics

- minimize $\text{card}(x)$ over convex set C
- suppose we know lower and upper bounds on x_i over C
 \[x \in C \implies l_i \leq x_i \leq u_i \]

(best values for these can be found by solving $2n$ convex problems)
- if $u_i < 0$ or $l_i > 0$, then $\text{card}(x_i) = 1$ (i.e., $x_i \neq 0$) for all $x \in C$
- assuming $l_i < 0$, $u_i > 0$, convex relaxation and convex envelope interpretations suggest using
 \[\sum_{i=1}^{n} \left(\frac{(x_i)^+}{u_i} + \frac{(x_i)^-}{-l_i} \right) \]
 as surrogate (and also lower bound) for $\text{card}(x)$
Regressor selection

minimize $\|Ax - b\|_2$
subject to $\text{card}(x) \leq k$

• heuristic:
 – minimize $\|Ax - b\|_2 + \gamma \|x\|_1$
 – find smallest value of γ that gives $\text{card}(x) \leq k$
 – fix associated sparsity pattern (i.e., subset of selected regressors) and find x that minimizes $\|Ax - b\|_2$

ℓ_1-norm methods for convex-cardinality problems
Example (6.4 in BV book)

- $A \in \mathbb{R}^{10 \times 20}$, $x \in \mathbb{R}^{20}$, $b \in \mathbb{R}^{10}$
- dashed curve: exact optimal (via enumeration)
- solid curve: ℓ_1 heuristic with polishing

ℓ_1-norm methods for convex-cardinality problems
Sparse signal reconstruction

- convex-cardinality problem:

 \[
 \text{minimize} \quad \|Ax - y\|_2 \\
 \text{subject to} \quad \text{card}(x) \leq k
 \]

- \(\ell_1\) heuristic:

 \[
 \text{minimize} \quad \|Ax - y\|_2 \\
 \text{subject to} \quad \|x\|_1 \leq \beta
 \]

 (called LASSO)

- another form: minimize \(\|Ax - y\|_2 + \gamma\|x\|_1\)

 (called basis pursuit denoising)
Example

• signal $x \in \mathbb{R}^n$ with $n = 1000$, card$(x) = 30$
• $m = 200$ (random) noisy measurements: $y = Ax + v$, $v \sim \mathcal{N}(0, \sigma^2 I)$, $A_{ij} \sim \mathcal{N}(0, 1)$
• left: original; right: ℓ_1 reconstruction with $\gamma = 10^{-3}$
- ℓ_2 reconstruction; minimizes $\|Ax - y\|_2 + \gamma\|x\|_2$, where $\gamma = 10^{-3}$
- *left*: original; *right*: ℓ_2 reconstruction
Some recent theoretical results

• suppose $y = Ax$, $A \in \mathbb{R}^{m \times n}$, $\text{card}(x) \leq k$

• to reconstruct x, clearly need $m \geq k$

• if $m \geq n$ and A is full rank, we can reconstruct x without cardinality assumption

• when does the ℓ_1 heuristic (minimizing $\|x\|_1$ subject to $Ax = y$) reconstruct x (exactly)?
recent results by Candès, Donoho, Romberg, Tao, . . .

- (for some choices of A) if $m \geq (C \log n)k$, ℓ_1 heuristic reconstructs x exactly, with overwhelming probability

- C is absolute constant; valid A’s include
 - $A_{ij} \sim \mathcal{N}(0, \sigma^2)$
 - Ax gives Fourier transform of x at m frequencies, chosen from uniform distribution

ℓ_1-norm methods for convex-cardinality problems
Total variation reconstruction

• fit x_{cor} with piecewise constant \hat{x}, no more than k jumps

• convex-cardinality problem: minimize $\|\hat{x} - x_{\text{cor}}\|_2$ subject to $\text{card}(Dx) \leq k$ (D is first order difference matrix)

• heuristic: minimize $\|\hat{x} - x_{\text{cor}}\|_2 + \gamma \|Dx\|_1$; vary γ to adjust number of jumps

• $\|Dx\|_1$ is total variation of signal \hat{x}

• method is called total variation reconstruction

• unlike ℓ_2 based reconstruction, TVR filters high frequency noise out while preserving sharp jumps
Example (§6.3.3 in BV book)

signal $x \in \mathbb{R}^{2000}$ and corrupted signal $x_{\text{cor}} \in \mathbb{R}^{2000}$
Total variation reconstruction

for three values of γ

ℓ_1-norm methods for convex-cardinality problems
ℓ_2 reconstruction

for three values of γ

\[\hat{x} \]

ℓ_1-norm methods for convex-cardinality problems
Example: 2D total variation reconstruction

- \(x \in \mathbb{R}^n \) are values of pixels on \(N \times N \) grid (\(N = 31 \), so \(n = 961 \))

- assumption: \(x \) has relatively few big changes in value (i.e., boundaries)

- we have \(m = 120 \) linear measurements, \(y = Fx \) (\(F_{ij} \sim \mathcal{N}(0, 1) \))

- as convex-cardinality problem:

\[
\begin{align*}
\text{minimize} & \quad \text{card}(x_{i,j} - x_{i+1,j}) + \text{card}(x_{i,j} - x_{i,j+1}) \\
\text{subject to} & \quad y = Fx
\end{align*}
\]

- \(\ell_1 \) heuristic (objective is a 2D version of total variation)

\[
\begin{align*}
\text{minimize} & \quad \sum |x_{i,j} - x_{i+1,j}| + \sum |x_{i,j} - x_{i,j+1}| \\
\text{subject to} & \quad y = Fx
\end{align*}
\]
TV reconstruction

. . . not bad for $8 \times$ more variables than measurements!

ℓ_1-norm methods for convex-cardinality problems
... this is what you’d expect with $8 \times$ more variables than measurements
Iterated weighted ℓ_1 heuristic

- to minimize $\text{card}(x)$ over $x \in C$

\[w := 1 \]

repeat

\[\text{minimize} \| \text{diag}(w)x \|_1 \text{ over } x \in C \]

\[w_i := 1/(\epsilon + |x_i|) \]

- first iteration is basic ℓ_1 heuristic
- increases relative weight on small x_i
- typically converges in 5 or fewer steps
- often gives a modest improvement (i.e., reduction in $\text{card}(x)$) over basic ℓ_1 heuristic
Interpretation

• wlog we can take $x \succeq 0$ (by writing $x = x_+ - x_-$, $x_+, x_- \succeq 0$, and replacing $\text{card}(x)$ with $\text{card}(x_+) + \text{card}(x_-)$)

• we’ll use approximation $\text{card}(z) \approx \log(1 + z/\epsilon)$, where $\epsilon > 0$, $z \in \mathbb{R}_+$

• using this approximation, we get (nonconvex) problem

$$\begin{aligned}
\text{minimize} & \quad \sum_{i=1}^{n} \log(1 + x_i/\epsilon) \\
\text{subject to} & \quad x \in \mathcal{C}, \quad x \succeq 0
\end{aligned}$$

• we’ll find a local solution by linearizing objective at current point,

$$\begin{aligned}
\sum_{i=1}^{n} \log(1 + x_i/\epsilon) & \approx \sum_{i=1}^{n} \log(1 + x_i^{(k)}/\epsilon) + \sum_{i=1}^{n} \frac{x_i - x_i^{(k)}}{\epsilon + x_i^{(k)}}
\end{aligned}$$
and solving resulting convex problem

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{n} w_i x_i \\
\text{subject to} & \quad x \in C, \quad x \succeq 0
\end{align*}
\]

with \(w_i = 1/(\epsilon + x_i) \), to get next iterate

- repeat until convergence to get a local solution
Sparse solution of linear inequalities

- minimize $\text{card}(x)$ over polyhedron $\{x \mid Ax \preceq b\}$, $A \in \mathbb{R}^{100 \times 50}$
- ℓ_1 heuristic finds $x \in \mathbb{R}^{50}$ with $\text{card}(x) = 44$
- iterated weighted ℓ_1 heuristic finds x with $\text{card}(x) = 36$
 (global solution, via branch & bound, is $\text{card}(x) = 32$)

ℓ_1-norm methods for convex-cardinality problems
Detecting changes in time series model

- AR(2) scalar time-series model

\[y(t + 2) = a(t)y(t + 1) + b(t)y(t) + v(t), \quad v(t) \text{ IID } \mathcal{N}(0, 0.5^2) \]

- assumption: \(a(t)\) and \(b(t)\) are piecewise constant, change infrequently
- given \(y(t), t = 1, \ldots, T\), estimate \(a(t), b(t), t = 1, \ldots, T - 2\)
- heuristic: minimize over variables \(a(t), b(t), t = 1, \ldots, T - 1\)

\[
\sum_{t=1}^{T-2} (y(t + 2) - a(t)y(t + 1) - b(t)y(t))^2 \\
+ \gamma \sum_{t=1}^{T-2} (|a(t + 1) - a(t)| + |b(t + 1) - b(t)|)
\]

- vary \(\gamma\) to trade off fit versus number of changes in \(a, b\)
Time series and true coefficients

\[y(t) \]

\[a(t) \quad b(t) \]

ℓ_1-norm methods for convex-cardinality problems
TV heuristic and iterated TV heuristic

left: TV with $\gamma = 10$; *right:* iterated TV, 5 iterations, $\epsilon = 0.005$
Extension to matrices

- **Rank** is natural analog of **card** for matrices

- convex-rank problem: convex, except for **Rank** in objective or constraints

- rank problem reduces to card problem when matrices are diagonal:
 \[\text{Rank}(\text{diag}(x)) = \text{card}(x) \]

- analog of \(\ell_1 \) heuristic: use **nuclear norm**, \(\|X\|_* = \sum_i \sigma_i(X) \)
 (sum of singular values; dual of spectral norm)

- for \(X \succeq 0 \), reduces to \(\text{Tr } X \) (for \(x \succeq 0 \), \(\|x\|_1 \) reduces to \(1^T x \))
Factor modeling

- given matrix $\Sigma \in S^n_+$, find approximation of form $\hat{\Sigma} = FF^T + D$, where $F \in \mathbb{R}^{n \times r}$, D is diagonal nonnegative
- gives underlying factor model (with r factors)

$$x = Fz + v, \quad v \sim \mathcal{N}(0, D), \quad z \sim \mathcal{N}(0, I)$$

- model with fewest factors:

$$\begin{align*}
\text{minimize} & \quad \text{Rank } X \\
\text{subject to} & \quad X \succeq 0, \quad D \succeq 0 \text{ diagonal} \\
& \quad X + D \in \mathcal{C}
\end{align*}$$

with variables $D, X \in S^n$

\mathcal{C} is convex set of acceptable approximations to Σ
• *e.g.*, via KL divergence

\[C = \{ \hat{\Sigma} \mid \; - \log \det(\Sigma^{-1/2}\hat{\Sigma}\Sigma^{-1/2}) + \text{Tr}(\Sigma^{-1/2}\hat{\Sigma}\Sigma^{-1/2}) - n \leq \epsilon \} \]

• trace heuristic:

\[
\begin{align*}
\text{minimize} & \quad \text{Tr } X \\
\text{subject to} & \quad X \succeq 0, \quad D \succeq 0 \text{ diagonal} \\
& \quad X + D \in C
\end{align*}
\]

with variables \(d \in \mathbb{R}^n, \; X \in \mathbb{S}^n \)
Example

- \(x = Fz + v, \quad z \sim \mathcal{N}(0, I), \quad v \sim \mathcal{N}(0, D), \quad D \) diagonal; \(F \in \mathbb{R}^{20 \times 3} \)

- \(\Sigma \) is empirical covariance matrix from \(N = 3000 \) samples

- set of acceptable approximations

\[
\mathcal{C} = \{ \hat{\Sigma} \mid \| \Sigma^{-1/2}(\hat{\Sigma} - \Sigma)\Sigma^{-1/2} \| \leq \beta \}
\]

- trace heuristic

\[
\begin{align*}
\text{minimize} \quad & \text{Tr } X \\
\text{subject to} \quad & X \succeq 0, \quad d \succeq 0 \\
& \| \Sigma^{-1/2}(X + \text{diag}(d) - \Sigma)\Sigma^{-1/2} \| \leq \beta
\end{align*}
\]
Trace approximation results

\[\text{Rank}(X) \] vs. \[\beta \]

\[\lambda_i(X) \] vs. \[\beta \]

\[\ell_1 \]-norm methods for convex-cardinality problems
• for $\beta = 0.1357$ (knee of the tradeoff curve) we find

- $\angle (\text{range}(X), \text{range}(FF^T)) = 6.8^\circ$
- $\|d - \text{diag}(D)\| / \|\text{diag}(D)\| = 0.07$

• i.e., we have recovered the factor model from the empirical covariance
Summary and conclusions

• convex-cardinality (and rank) problems arise in many applications

• these problems are hard (to solve exactly, in general)

• heuristics based on ℓ_1 norm (or nuclear norm for rank)
 – are convex, hence solvable
 – give very good results in practice

• is basis of many well known methods
 (lasso, SVM, compressed sensing, TV denoising, ...)