Localization and Cutting-Plane Methods

- cutting-plane oracle
- finding cutting-planes
- localization algorithms
- specific cutting-plane methods
- epigraph cutting-plane method
- lower bounds and stopping criteria
Localization and cutting-plane methods

• based on idea of ‘localizing’ desired point in some set, which becomes smaller at each step

• like subgradient methods, require computation of a subgradient of objective or constraint functions at each step

• in particular, directly handle nondifferentiable convex (and quasiconvex) problems

• typically require more memory and computation per step than subgradient methods

• but can be much more efficient (in theory and practice) than subgradient methods
Cutting-plane oracle

- goal: find a point in convex set $X \subseteq \mathbb{R}^n$, or determine that $X = \emptyset$

- our only access to or description of X is through a *cutting-plane oracle*

- when cutting-plane oracle is *queried* at $x \in \mathbb{R}^n$, it either
 - asserts that $x \in X$, or
 - returns a separating hyperplane between x and X: $a \neq 0$,

 $$a^T z \leq b \text{ for } z \in X, \quad a^T x \geq b$$

- (a, b) called a *cutting-plane*, or *cut*, since it eliminates the halfspace $\{z \mid a^T z > b\}$ from our search for a point in X
Neutral and deep cuts

- if \(a^T x = b \) (\(x \) is on boundary of halfspace that is cut) cutting-plane is called \textit{neutral cut}
- if \(a^T x > b \) (\(x \) lies in interior of halfspace that is cut), cutting-plane is called \textit{deep cut}
Unconstrained minimization

• minimize convex $f : \mathbb{R}^n \to \mathbb{R}$

• X is set of optimal points (minimizers)

• given x, find $g \in \partial f(x)$

• from $f(z) \geq f(x) + g^T(z - x)$ we conclude

$$g^T(z - x) > 0 \implies f(z) > f(x)$$

i.e., all points in halfspace $g^T(z - x) \geq 0$ are worse than x, and in particular not optimal

• so $g^T(z - x) \leq 0$ is (neutral) cutting-plane at x ($a = g, b = g^T x$)
by evaluating \(g \in \partial f(x) \) we rule out a halfspace in our search for \(x^* \)

- **idea**: get one bit of info (on location of \(x^* \)) by evaluating \(g \)
Deep cut for unconstrained minimization

• suppose we know a number \(\bar{f} \) with \(f(x) > \bar{f} \geq f^* \)
 \((e.g.,\) the smallest value of \(f \) found so far in an algorithm\)

• from \(f(z) \geq f(x) + g^T(z - x) \), we have

\[
f(x) + g^T(z - x) > \bar{f} \implies f(z) > \bar{f} \geq f^* \implies z \notin X
\]

so we have deep cut

\[
g^T(z - x) + f(x) - \bar{f} \leq 0
\]
Feasibility problem

\[
\begin{align*}
\text{find} & \quad x \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]

\(f_1, \ldots, f_m\) convex; \(X\) is set of feasible points

- if \(x\) not feasible, find \(j\) with \(f_j(x) > 0\), and evaluate \(g_j \in \partial f_j(x)\)
- since \(f_j(z) \geq f_j(x) + g_j^T(z - x)\),

\[
f_j(x) + g_j^T(z - x) > 0 \implies f_j(z) > 0 \implies z \not\in X
\]

\(i.e.,\) any feasible \(z\) satisfies the inequality \(f_j(x) + g_j^T(z - x) \leq 0\)

- this gives a deep cut
Inequality constrained problem

minimize \(f_0(x) \)

subject to \(f_i(x) \leq 0, \quad i = 1, \ldots, m \)

\(f_0, \ldots, f_m : \mathbb{R}^n \to \mathbb{R} \) convex; \(X \) is set of optimal points; \(p^* \) is optimal value

- if \(x \) is not feasible, say \(f_j(x) > 0 \), we have (deep) feasibility cut
 \[f_j(x) + g_j^T(z - x) \leq 0, \quad g_j \in \partial f_j(x) \]

- if \(x \) is feasible, we have (neutral) objective cut
 \[g_0^T(z - x) \leq 0, \quad g_0 \in \partial f_0(x) \]

(or, deep cut \(g_0^T(z - x) + f_0(x) - \bar{f} \leq 0 \) if \(\bar{f} \in [p^*, f_0(x)] \) is known)
Localization algorithm

basic (conceptual) localization (or cutting-plane) algorithm:

\[\text{given initial polyhedron } P_0 = \{ z | Cz \leq d \} \text{ known to contain } X \]
\[k := 0 \]
\[\text{repeat} \]
\[\text{Choose a point } x^{(k+1)} \text{ in } P_k \]
\[\text{Query the cutting-plane oracle at } x^{(k+1)} \]
\[\text{If } x^{(k+1)} \in X, \text{ quit} \]
\[\text{Else, add new cutting-plane } a_{k+1}^T z \leq b_{k+1}: \]
\[P_{k+1} := P_k \cap \{ z | a_{k+1}^T z \leq b_{k+1} \} \]
\[\text{If } P_{k+1} = \emptyset, \text{ quit} \]
\[k := k + 1 \]
\begin{itemize}
\item \(\mathcal{P}_k \) gives our uncertainty of \(x^* \) at iteration \(k \)
\item want to pick \(x^{(k+1)} \) so that \(\mathcal{P}_{k+1} \) is as small as possible, no matter what cut is made
\item want \(x^{(k+1)} \) near center of \(\mathcal{P}^{(k)} \)
\end{itemize}
Example: Bisection on \mathbb{R}

- minimize convex $f : \mathbb{R} \rightarrow \mathbb{R}$
- \mathcal{P}_k is interval
- obvious choice for query point: $x^{(k+1)} := \text{midpoint}(\mathcal{P}_k)$

bisection algorithm

given interval $\mathcal{P}_0 = [l, u]$ containing x^*

repeat

1. $x := (l + u)/2$
2. evaluate $f'(x)$
3. if $f'(x) < 0$, $l := x$; else $u := x$
\(P_k \)
\[\text{length}(\mathcal{P}_{k+1}) = u_{k+1} - l_{k+1} = \frac{u_k - l_k}{2} = \frac{1}{2} \text{length}(\mathcal{P}_k) \]

and so \(\text{length}(\mathcal{P}_k) = 2^{-k} \text{length}(\mathcal{P}_0) \)

interpretation:

- \(\text{length}(\mathcal{P}_k) \) measures our uncertainty in \(x^* \)
- uncertainty is halved at each iteration; get exactly one bit of info about \(x^* \) per iteration
- \# steps required for uncertainty (in \(x^* \)) \(\leq r \):
 \[
 \log_2 \frac{\text{length}(\mathcal{P}_0)}{r} = \log_2 \frac{\text{initial uncertainty}}{\text{final uncertainty}}
 \]
Specific cutting-plane methods

methods vary in choice of query point

• center of gravity (CG) algorithm:
 \(x^{(k+1)} \) is center of gravity of \(P_k \)

• maximum volume ellipsoid (MVE) cutting-plane method:
 \(x^{(k+1)} \) is center of maximum volume ellipsoid contained in \(P_k \)

• Chebyshev center cutting-plane method:
 \(x^{(k+1)} \) is Chebyshev center of \(P_k \)

• analytic center cutting-plane method (ACCPM):
 \(x^{(k+1)} \) is analytic center of (inequalities defining) \(P_k \)
Center of gravity algorithm

take \(x^{(k+1)} = \text{CG}(\mathcal{P}_k) \) (center of gravity)

\[
\text{CG}(\mathcal{P}_k) = \frac{\int_{\mathcal{P}_k} x \, dx}{\int_{\mathcal{P}_k} dx}
\]

Theorem. If \(C \subseteq \mathbb{R}^n \) convex, \(x_{\text{cg}} = \text{CG}(C) \), \(g \neq 0 \),

\[
\text{vol} \left(C \cap \{ x \mid g^T (x - x_{\text{cg}}) \leq 0 \} \right) \leq (1 - 1/e) \text{vol}(C) \approx 0.63 \text{ vol}(C)
\]

(independent of dimension \(n \))

hence in CG algorithm, \(\text{vol}(\mathcal{P}_k) \leq 0.63^k \text{ vol}(\mathcal{P}_0) \)
Convergence of CG cutting-plane method

• suppose \(\mathcal{P}_0 \) lies in ball of radius \(R \), \(X \) includes ball of radius \(r \) (can take \(X \) as set of \(\epsilon \)-suboptimal points)

• suppose \(x^{(1)}, \ldots, x^{(k)} \not\in X \), so \(\mathcal{P}_k \supseteq X \)

• we have

\[
\alpha_n r^n \leq \text{vol}(\mathcal{P}_k) \leq (0.63)^k \text{vol}(\mathcal{P}_0) \leq (0.63)^k \alpha_n R^n
\]

where \(\alpha_n \) is volume of unit ball in \(\mathbb{R}^n \)

• so \(k \leq 1.51n \log_2(R/r) \) (cf. bisection on \(\mathbb{R} \))
advantages of CG-method

• guaranteed convergence
• affine-invariance
• number of steps proportional to dimension n, log of uncertainty reduction

disadvantages

• finding $x^{(k+1)} = \text{CG}(P_k)$ is much harder than original problem

(but, can modify CG-method to work with approximate CG computation)
Maximum volume ellipsoid method

• \(x^{(k+1)} \) is center of maximum volume ellipsoid in \(\mathcal{P}_k \)
 (can compute as convex problem)

• affine-invariant

• can show \(\text{vol}(\mathcal{P}_{k+1}) \leq (1 - 1/n) \text{vol}(\mathcal{P}_k) \)

• hence can bound number of steps:

\[
k \leq \frac{n \log(R/r)}{-\log(1 - 1/n)} \approx n^2 \log(R/r)
\]

• if cutting-plane oracle cost is not small, MVE is a good practical method
Chebyshev center method

- \(x^{(k+1)} \) is center of largest Euclidean ball in \(\mathcal{P}_k \) (can compute via LP)

- not affine invariant; sensitive to scaling
Analytic center cutting-plane method

- $x^{(k+1)}$ is analytic center of $\mathcal{P}_k = \{z \mid a_i^T z \leq b_i, \ i = 1, \ldots, q\}$

\[
x^{(k+1)} = \operatorname{argmin}_x - \sum_{i=1}^{q} \log(b_i - a_i^T x)
\]

- $x^{(k+1)}$ can be computed using infeasible start Newton method

- works quite well in practice (more on this next lecture)
Extensions

Multiple cuts

• oracle returns set of linear inequalities instead of just one, *e.g.*,
 – all violated inequalities
 – all inequalities (including *shallow cuts*)
 – multiple deep cuts

• at each iteration, append (set of) new inequalities to those defining P_k

Nonlinear cuts

• use nonlinear convex inequalities instead of linear ones
• localization set no longer a polyhedron
• some methods (*e.g.*, ACCPM) still work
Dropping constraints

• the problem:
 – number of linear inequalities defining \mathcal{P}_k increases at each iteration
 – hence, computational effort to compute $x^{(k+1)}$ increases

• the solution: drop or prune constraints
 – drop redundant constraints
 – keep only a fixed number N of (the most relevant) constraints
 (can cause localization polyhedron to increase!)
Epigraph cutting-plane method

apply cutting-plane method to epigraph form problem

\[
\begin{align*}
\text{minimize} & \quad t \\
\text{subject to} & \quad f_0(x) \leq t \\
& \quad f_i(x) \leq 0, \quad i = 1, \ldots, m.
\end{align*}
\]

with variables \(x \in \mathbb{R}^n\) and \(t\)

at each \((x, t)\), need cutting-plane oracle that separates \((x, t)\) from \((x^*, p^*)\)
• if $x^{(k)}$ is infeasible for original problem and violates jth constraint, add the cutting-plane

$$f_j(x^{(k)}) + g_j^T (x - x^{(k)}) \leq 0, \quad g_j \in \partial f_j(x^{(k)})$$

• if $x^{(k)}$ is feasible for original problem, add two cutting-planes

$$f_0(x^{(k)}) + g_0^T (x - x^{(k)}) \leq t, \quad t \leq f_0(x^{(k)})$$

where $g_0 \in \partial f_0(x^{(k)})$
PWL lower bound on convex function

• suppose we have evaluated f and a subgradient of f at $x^{(1)}, \ldots, x^{(q)}$

• for all z,

$$f(z) \geq f(x^{(i)}) + g^{(i)}T(z - x^{(i)}), \quad i = 1, \ldots, q$$

and so

$$f(z) \geq \hat{f}(z) = \max_{i=1, \ldots, q} \left(f(x^{(i)}) + g^{(i)}T(z - x^{(i)}) \right).$$

• \hat{f} is a convex piecewise-linear global underestimator of f
Lower bound

• in solving convex problem

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Cx \preceq d
\end{align*}
\]

we have evaluated some of the \(f_i \) and subgradients at \(x^{(1)}, \ldots, x^{(k)} \)

• form piecewise-linear approximations \(\hat{f}_0, \ldots, \hat{f}_m \)

• form PWL relaxed problem

\[
\begin{align*}
\text{minimize} & \quad \hat{f}_0(x) \\
\text{subject to} & \quad \hat{f}_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Cx \preceq d
\end{align*}
\]
(can be solved via LP)

- optimal value is a lower bound on p^*