EE365: Informed Search
Dijkstra’s algorithm

\[v_s = 0 \]
\[v_i = \infty \text{ for all } i \neq s \]
\[F = \{s\} \]

while \(F \neq \emptyset \)

\[i = \arg\min_{i \in F} v_i \]

// extract vertex \(i \)

\[F = F \setminus \{i\} \]

if \(i \in T \) terminate

// found target

for \(j \in N_i \)

\[\text{if } v_j > v_i + g_{ij} \]

\[v_j = v_i + g_{ij} \]

\[F = F \cup \{j\} \]

- explores \(V \) closest first
- stops upon reaching the target set
- needs \(\text{dist}(i, T) \geq 0 \) for all \(i \)
A* algorithm

\[v_s = 0 \]
\[v_i = \infty \text{ for all } i \neq s \]
\[F = \{s\} \]

while \(F \neq \emptyset \)

\[i = \arg\min_{i \in F} v_i + h_i \quad \text{// modified extraction rule} \]
\[F = F \setminus \{i\} \]

if \(i \in T \) **terminate** \quad \text{// found target}

for \(j \in N_i \)

\[\text{if } v_j > v_i + g_{ij} \]
\[v_j = v_i + g_{ij} \]
\[F = F \cup \{j\} \]

- \(h_i \) is an *estimate* of the distance from \(i \) to the target \(\text{dist}(i, T) \)
- \(h \) is called the *heuristic* function
- idea is to *guide* the search to look first in directions suggested by the heuristic
Informed search

- h is the \textit{heuristic} function
- h_i is an estimate of the optimal \textit{cost to go} from i to the target
- search first in directions with smallest estimated \textit{total cost}
- a good choice of h reduces the number of vertices explored by the search
- and reduces the number of steps before termination
- called \textit{informed search}
- correspondingly, shortest path algorithms without heuristics are called \textit{uninformed search}
Reduction to Dijkstra’s algorithm

- construct *transformed graph*, with weights $\hat{g}_{ij} = g_{ij} + h_j - h_i$

- applying Dijkstra to the transformed graph is the same as applying A^* to the original graph
Reduction to Dijkstra’s algorithm

for any path \(u \rightarrow w \rightarrow x \rightarrow \ldots \rightarrow y \rightarrow z \)

\[
\hat{g}(u \leadsto z) = g(u \leadsto z) + h_z - h_u
\]

because

\[
\hat{g}(u \leadsto z) = g_{uw} + h_w - h_u + g_{wx} + h_x - h_w + \cdots + g_{yz} + h_z - h_y
\]

- we’ll see that \(A^* \) finds the shortest path in the transformed graph (Dijkstra)
- with target vertex \(t \), algorithm \(A^* \) therefore minimizes \(g(s \leadsto t) + h_t \)
Reduction to Dijkstra’s algorithm

- let \hat{v} be the distance estimate in Dijkstra’s algorithm
- let v be the distance estimate in A^*
- then the algorithms are the same, with $\hat{v}_i = v_i + h_i - h_s$, because
 - $\hat{v}_j - \hat{v}_i + \hat{g}_{ij} = v_j - v_i + g_{ij}$ so the same edges are relaxed
 - $\arg\min_i \hat{v}_i = \arg\min_i v_i + h_i$ so the same vertices are extracted
Admissible heuristics

the function h is called **admissible** if, for all $i \in V$,

$$h_i \leq \text{dist}(i, T)$$

- if h is admissible, then

 $$\widehat{\text{dist}}(i, T) = \min_{j \in T} \text{dist}(i, j)$$

 $$= \min_{j \in T} (\text{dist}(i, j) + h_j - h_i)$$

 $$= \text{dist}(i, T) - h_i$$

 $$\geq 0$$

- hence admissibility implies that $\widehat{\text{dist}}(i, T) \geq 0$ for all i

- this is precisely the condition required by Dijkstra’s algorithm

- if h is admissible, then A^* will terminate with a shortest path from s to T
Consistent heuristics

the function h is called \textit{consistent} if $h_x = 0$ for all $x \in T$ and for all $i, j \in V$,

\[g_{ij} + h_j - h_i \geq 0 \]

\begin{itemize}
 \item a \textit{Bellman inequality}
 \item also called a \textit{monotone} heuristic
 \item hence, for any path, $g(i \rightsquigarrow j) \geq h_i - h_j$
 \item implies admissibility, since
 \[\text{dist}(i, T) = \min_{j \in T} \text{dist}(i, j) \geq \min_{j \in T} (h_i - h_j) = h_i \]
\end{itemize}
Consistent heuristics

- if h is consistent then the weights in the transformed graph are *nonnegative*
- with nonnegative weights, Dijkstra extracts each vertex once, and never revisits vertices
- hence A^* never *backtracks*
Constructing heuristics

- relax constraints on the allowed actions; gives an admissible heuristic
- pointwise maximum of admissible (consistent) heuristics is admissible (consistent)
Example: Two dimensional grid

- Estimate the distance to target through the Manhattan distance:

\[h_u = |u_x - t_x| + |u_y - t_y| \]

- Manhattan distance is a lower bound, since it assumes no obstacles

- in fact, it is a consistent heuristic

Left: Uninformed search \(h = 0 \),

\[N = 4066 \]

Dijkstra Algorithm \(N = 4066 \)

Right: Heuristic search

\[N = 1277. \]

A* Algorithm with Manhattan Heuristic \(N = 1277 \)
Two dimensional maze

Problem: find shortest path in the following maze.

- **Starting** position is with cyan.
- **target** position with red.
- **waypoints** between squares are denoted with blue.
Two dimensional maze

Problem: Find the shortest path between starting position and target.
Waypoints graph

Waypoints between blocks and connectivity pattern.

State Space and super-imposed Map
Two dimensional maze

- Using **uninformed search** $h = 0$, we essentially have to explore the whole space before we find the shortest path.
Two dimensional maze

- **Manhattan Distance Estimate:** $\hat{h}_u = |u_x - t_x| + |u_y - t_y|$. Essentially assumes there are no obstacles (relaxes constraints).
Two dimensional maze

- **Waypoints Graph** with *Manhattan Distance Weights*. Essentially assumes there are no obstacles in going from one waypoint to the other.

A* with Map Sketch Heuristic N=2043 d*=202
Two dimensional maze

- **Waypoints Graph** with *Computed Pairwise Distance Weights*. Essentially assumes there are no obstacles in going from the point to the closest waypoint and from the last waypoint to the target.

\[A^* \text{ with Map Exact Heuristic } N=492 \text{ } d^*=202 \]
Search strategies

- both Dijkstra and A^* are guaranteed to find the *optimal solution* if it exists
- heuristics *change the sequence* in which vertices are searched
- A^* heavily used in practice
- most common limitation is available memory
- further refinements possible to trade-off time/memory