EE365: The Bellman-Ford Algorithm
Shortest path problems

- given weighted graph and a destination vertex
- find lowest cost path from every vertex to destination
Dynamic programming principle

- let $g_{ij} =$ cost of edge $i \rightarrow j$ \hfill (∞ if no edge)
- let $v_i =$ cost of shortest path from i to destination; it must satisfy

$$v_i = \min_j (g_{ij} + v_j)$$
Dynamic programming principle

\[v_i = \min_j (g_{ij} + v_j) \]

- starting at vertex \(i \)
- \(g_{ij} \) is cost of next step
- shortest path minimizes sum of
 - cost for next step
 - shortest path from where you land
Dynamic programming principle

\[v_i = \min_j (g_{ij} + v_j) \]

- once we know \(v \), we also know the optimal path from all initial vertices
- from vertex \(i \), move to the minimizer \(j \)
Bellman-Ford algorithm

- let $v_i^0 = \begin{cases} 0 & \text{if } i = \text{destination} \\ \infty & \text{otherwise} \end{cases}$

- for $k = 0, \ldots, n - 1$
 - $v_{i}^{k+1} = \min \{v_i^k, \min_j (g_{ij} + v_j^k)\}$

- v_i^k is lowest cost path from i to destination in k steps or fewer

- if $v^n \neq v^{n-1}$ then graph has negative cycle, and cost may be made $-\infty$

- stop early if $v^{k+1} = v^k$

- n vertices, m edges, runs in $O(mn)$ time
Bellman-Ford algorithm

\[v_i^{k+1} = \min\{v_i^k, \min_j (g_{ij} + v_j^k)\} \]
Dynamic programming

- breaks up large problem into nested subproblems
- works backward in time (for deterministic problems, can also work forwards)
- stores the solution of subproblems in the value function, to allow reuse at many states
Shortest path problems

- Dijkstra’s algorithm is similar but faster \(O(m + n \log n) \), and requires non-negative weights
- both BF and Dijkstra give shortest path from every vertex to destination
- other algorithms, such as \(A^* \), find shortest path between two vertices