EE365: Shortest Paths

Deterministic optimal control
The simplest shortest path algorithm

Dijkstra’s algorithm

Deterministic optimal control

Deterministic optimal control

» variables are x1,...,z7, uo,...,ur—1. To is given
» just an optimization problem, with a trivial information pattern
» can extend to case when costs are random, when dynamics are deterministic

» useful way to formulate many general optimization problems (e.g., knapsack)

Equivalent shortest path problems

create the unrolled graph

» vertex setis V = Xy U --- U Xp; if time-invariant, then V = X x {0,...,T}

» directed edges corresponding to u; from z; to xi41 = fi(ze, ue)
if there are multiple edges, keep the lowest cost one

» edge weights are g(x¢, ut)

» add additional target vertex z with an edge from each x € X1 with weight
gr(z)

» a sequence of actions is a path through the unrolled graph from x¢ to z

» associated objective is total, weighted path length

Unrolled graph

U Xrp

vertex set is Xp U - -

Unrolled graph

directed edges, labeled by u:, from z; to zi41 = fi(we, us)

Unrolled graph

a sequence of actions is a path through the unrolled graph

Dynamic programming

» dynamic programming is often too computationally expensive
» T|X||U| operations
» the state space can be so large that we cannot store the value function v

» specify the system in code by a function that returns f(z, u) given x, u; called
an oracle or an implicit description

» for MPC, we are only interested in finding the best action to take given the
current state, not given any possible state (as given by DP)

The simplest shortest path algorithm

The simplest shortest path problem

» given weighted directed graph with vertices V' and a source vertex s € V

» find lowest cost path from source to every vertex

10

Problem description

v

directed graph

» Vs a finite set of vertices

» & is the set of directed edges i — j

» for each i, N; is the set of neighbors j such that i — j is an edge
» gi; is the cost of edge i — j

» s is the source vertex

» 7 CVis the target set

v

dist(s,) is the cost of the minimum-cost path from s to 4

dist = mindist(s, s
» dist(s,7T) min dis (s,1%)

11

Problems with value iteration

» we have seen (one form of) the Bellman-Ford algorithm
» it finds the shortest path from a vertex s to all vertices
» often we only want the shortest path from s to some target set 7 C V

» e.g., in the unrolled graph, V = Xy U --- U X1, the source vertex is xg € X
and the target set is 7 = {z}

12

The simplest algorithm

vs =0

vi =00 forall i # s

while there is an edge ¢ — j such that v; > v; + gy
let ¢ — j be any such edge
vj = Vi + gij

v

negative edge weights g;; allowed

each step is called edge relaxation

v

» requires storing the array v, which is the size of V

» finds the shortest path from source vertex s to all vertices

13

The simplest algorithm

vs =0

vi =00 forall i # s

while there is an edge ¢ — j such that v; > v; + gy
let ¢ — j be any such edge
vj = Vi + gij

if the graph has no negative cycles, then the algorithm terminates, because

» by induction, at every step v; is either co or the cost of some path s ~~ ¢
» these paths are always acyclic

» at every step, some v; decreases, and there are only finitely many paths

14

The simplest algorithm

vs =0

vi =00 forall i # s

while there is an edge ¢ — j such that v; > v; + gy
let ¢ — j be any such edge
vj = Vi + gij

to show the algorithm terminates correctly, we will show that if there is no edge
such that v; > v; + gi;, then v; = dist(s,) for all 4.

» suppose for a contradiction that v; # dist(s, %) but v; = v; + g;; for all edges
» v; is the cost of some path s ~» j — k ~> ¢
» let j — k be the first edge along the path such that vx > dist(s, k)

» then v; = dist(s, j) and dist(s, k) > v; + g;k, hence vi, > v; + gji

15

Properties of the simplest algorithm

» many well-known shortest path algorithms correspond to a particular choice
of which order to relax edges

» often very fast

» one can construct (pathological) examples where it is very slow

16

Dijkstra’s algorithm

17

Dijkstra’s algorithm

vs =0
vi =00 forall i # s
F={s}
while F' # ()
i = argmin v; // extract vertex i
i€F
F=F\{i}
for j € \;

if v; > v + gi;
v =i + Gij
F=FuU{j}

» maintains a set I called the frontier or open set
» terminates with v; = dist(s,) if graph has no negative cycles

» extracts the vertex with smallest v;, relaxes its outgoing edges
18

Dijkstra’s algorithm

vs =0
vi =00 forall i # s
F={s}
while F' # ()
i = argmin v; // extract vertex i
i€F
F=F\{i}
for j € \;

if v; > v + gi;
v =i + Gij
F=FuU{j}
when all g;; >0
» algorithm extracts vertices in order of distance from s
» each vertex is extracted at most once

» v; > dist(s, i) always; equality when ¢ is extracted

19

Interpretation of Dijkstra’s algorithm

» the algorithm may be thought of as a simulation of fluid flow

» imagine fluid traveling from the source vertex s, moving at speed 1

» gi; is time for fluid to traverse edge i — j

» set v; at neighbors of 7 to be the estimated time of arrival

» when fluid arrives at the next vertex, update the ETA of its neighbors

» some of these estimates may be too large, since the fluid might find shortcuts

20

Keeping track of visited vertices

vs =0
vi =00 forall i # s
F={s}
E=0
while I # ()
i = argmin v; // extract vertex i
ieF
E =FEU{i}
for j e N;

if v; > v + gi;
vj = Vi + gij
F=Fu{j}

» keeps track of E, the set of visited vertices, called the closed set

21

Inductive proof

When all weights g;; > 0, one can show by induction that, after each iteration

» there is some d such that

dist(s, 7)

< forallie E
dist(s,i) >

foralli g E

» for all 4, v; is the length of the shortest path s ~~ i fully contained in E

22

Termination

F={sh, E=0
vs =0
while ' # ()
1 = argmin v;
i€F

1 F=F\{i}; E=FEU{i}
if 1 € T terminate
for j e N;
ifj¢ FUE
vj =vi +gij; F'=FU{j}
else if j € F
v; = min{v;,vi + gij }
else if Uy >’Uz‘+gij
vj = Vi + Gij
2 E=FE\{j}; F=FU{j}

// extract vertex i

// found target

// removing from E is optional

23

Theorem

for any weights ¢ such that dist(¢,7) > 0 for all i € V

» the algorithm terminates

» on termination, v; = dist(s, %)

» condition allows negative edges, but no negative cycles

» since v; is the optimal cost, assigning parents as the algorithm progresses
gives a shortest path from s to ¢

» note that the only reason we need additional assumptions (compared with the
simplest algorithm) is that we are terminating the search early

24

The closed set

» maintaining the set E is optional

» the algorithm reduces to the previous one if we do not maintain F
» often E is stored as a hash table, along with the values of v in E

» if we remove from E (in line 2), then E and F are always disjoint

» then (depending on the implementation) it may be easier to implement addi-
tion of elements to E (in line 1)

25

Efficient implementation

» store F' as a heap providing insert, delete, and extract-min operations
» since we terminate early, we do not need to store v; for every vertex ¢
» store v using a hash table, or keep values of v with vertices

» implement set E as a hash table

» neither hash tables nor heaps are available in Matlab

» in Matlab arrays are a workaround, but scale poorly

» if V is small, then we can mark vertices as open/closed in an array instead of
maintaining sets/lists

26

Example: Two dimensional grid

» frontier F' shown in yellow

» closed set E shown in blue

27

