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Overview

• Single-pixel imaging and other compressive imaging problems

• HQS for general inverse problems & compressive imaging
• The Alternating Direction Methods of Multipliers (ADMM)

• ADMM for general inverse problems & compressive imaging
• Outlook on using ADMM with Poisson noise and multiple 

regularizers

Must read: course notes on Solving Regularized Inverse Problems with ADMM!



Single-pixel Imaging
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Under-determined Inverse Problems

• Image formation model: 𝒃 = 𝑨𝒙 + 𝜼, 𝒃 ∈ ℝ! , 𝒙 ∈ ℝ",𝑨 ∈ ℝ!×"

𝑀 < 𝑁
• What makes it under-determined (or a 

compressive imaging problem):

• Problem: infinitely many solutions satisfy the observations! 

Same problem as ill-posed problems! à need image priors



Under-determined Inverse Problems

• Image formation model: 𝒃 = 𝑨𝒙 + 𝜼, 𝒃 ∈ ℝ! , 𝒙 ∈ ℝ",𝑨 ∈ ℝ!×"

• Standard approach – the least-norm solution: -𝒙$% = 𝑨𝑻 𝑨𝑨𝑻 𝒃

minimize' 𝒙 (

subject	to	 𝑨𝒙 = 𝒃
• This is the solution of optimization problem

Note: among the infinitely many solutions satisfying the observations, 
the least-norm solution is the one with the smallest L2 norm, thus 

equivalent to ⋅ ! regularizer



Under-determined Inverse Problems

• Image formation model: 𝒃 = 𝑨𝒙 + 𝜼, 𝒃 ∈ ℝ! , 𝒙 ∈ ℝ",𝑨 ∈ ℝ!×"

• Standard approach – the least-norm solution: -𝒙$% = 𝑨𝑻 𝑨𝑨𝑻 𝒃

Compression Factor ⁄! "

2x 8x

PSNR 12.3 PSNR 9.7

4x

PSNR 10.4

• Results (not great):
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Other Inverse Problems in Imaging

• Computational photography
• Light field imaging

• Thermal imaging

• …



Other Inverse Problems in Imaging

• All these inverse problems have important applications and 

are very different

minimize𝒙
1
2 𝒃 − 𝑨𝒙 (

( + λΨ 𝒙

• Yet, they all boil down to the same inverse problem, each with 

a different matrix 𝑨: 

• The methods derived here also apply to all those problems 

and applications; single-pixel imaging is a great example 
problem à “if you can solve this, you can solve anything” 



Review of HQS for General Inverse Problems

minimize𝒙
1
2 𝒃 − 𝑨𝒙 (

( + λΨ 𝑫𝒙

weight of regularizer

• Objective or “loss” function 

of general inverse problem:

minimize ',+
1
2 𝒃 − 𝑨𝒙 (

( + 𝜆Ψ 𝒛

subject	to	 𝑫𝒙 − 𝒛 = 0

𝐿, 𝒙, 𝒛 = 𝑓 𝒙 + 𝑔 𝒛 +
𝜌
2 𝑫𝒙 − 𝒛 (

(

• Reformulate as:

• Remove constraints using 

penalty term (equivalent for large 𝜌):

𝑓 𝒙 𝑔 𝒛

penalty term



𝐿, 𝒙, 𝒛 = 𝑓 𝒙 + 𝑔 𝒛 +
𝜌
2 𝑫𝒙 − 𝒛 (

(

𝒙 ← prox-,, 𝒛 = arg	min𝒙	𝐿, 𝒙, 𝒛 = arg	min𝒙	𝑓 𝒙 +
𝜌
2 𝑫𝒙 − 𝒛 (

(

𝒛 ← prox.,, 𝑫𝒙 = arg	min𝒛	𝐿, 𝒙, 𝒛 = arg	min𝒛	𝑔 𝒛 +
𝜌
2 𝑫𝒙 − 𝒛 (

(

while not converged:

• Alternating gradient descent approach to solving penalty 

formulation leads to following iterative algorithm: 

Review of HQS for General Inverse Problems



𝐿, 𝒙, 𝒛 = 𝑓 𝒙 + 𝑔 𝒛 +
𝜌
2 𝑫𝒙 − 𝒛 (

(

𝐿, 𝒙, 𝒛 =
1
2 𝑨𝒙 − 𝒃 (

( + λΨ 𝒛 +
𝜌
2 𝑫𝒙 − 𝒛 (

(

𝑨 ∈ ℝ!×"

𝒛 ∈ ℝ(", 𝑫 =
𝑫'
𝑫0 ∈ ℝ("×"

𝒙 ∈ ℝ" unknown image

for TV regularizer

for denoising or other regularizers

matrix describing image formation model

Review of HQS for General Inverse Problems

𝒛 ∈ ℝ", 𝑫 = 𝑰 ∈ ℝ"×"



𝒙 ← prox ⋅ !,, 𝒛 = arg	min𝒙
1
2 𝑨𝒙 − 𝒃 (

( +
𝜌
2 𝑫𝒙 − 𝒛 (

(
𝒙	– update:

Review of HQS for General Inverse Problems

𝒙 ← 𝑨𝑻𝑨 + 𝜌𝑫𝑻𝑫 23 𝑨𝑻𝒃 + 	𝜌𝑫𝑻𝒛

(𝑨 (𝒃

• For general inverse problems, we don’t necessarily have an 
efficient closed-form solution for this problem, like we did for the 
deconvolution problem in lecture 10

• Use matrix-free iterative solver, such as the conjugate gradient 
method, to solve O𝑨𝒙 = O𝒃 (e.g., scipy.sparse.linalg.cg)



Review of HQS for General Inverse Problems
𝒛	– update for TV regularizer in closed form:

𝒛 ← prox ⋅ ",, 𝑫𝒙 = arg	min𝒛	𝜆 𝒛 3 +
,
(
𝑫𝒙 − 𝒛 (

(= 𝒮4 𝒗

𝒛	– update for denoising-based regularizer in closed form:

𝒛 ← prox𝒟,, 𝒙 = arg	min𝒛	𝜆Ψ 𝒛 + ,
(
𝒙 − 𝒛 (

( = 𝒟 𝒙, 𝜎( = 6
,



HQS for Single-pixel Imaging
HQS+TV HQS+DnCNN
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8x

PSNR 33.7

PSNR 15.4

PSNR 32.0

PSNR 16.3

4x

PSNR 18.6 PSNR 26.0

• Works okay for low compression 
factor, i.e., when 𝑀	is close to 𝑁

• Not very robust for larger 
compression factors

• Formulation using penalty term is 
not adequate à need something 
more robust



HQS vs. ADMM
minimize𝒙

1
2 𝒃 − 𝑨𝒙 (

( + λΨ 𝑫𝒙• Objective function:

minimize ',+
1
2 𝒃 − 𝑨𝒙 (

( + 𝜆Ψ 𝒛

subject	to	 𝑫𝒙 − 𝒛 = 0

𝐿+
(-./) 𝒙, 𝒛 = 𝑓 𝒙 + 𝑔 𝒛 +

𝜌
2 𝑫𝒙 − 𝒛 !

!

• Reformulate as:

• Penalty Method 
of HQS:

𝑓 𝒙 𝑔 𝒛

𝐿+
(1233) 𝒙, 𝒛, 𝒚 = 𝑓 𝒙 + 𝑔 𝒛 + 𝒚4 𝑫𝒙 − 𝒛 +

𝜌
2 𝑫𝒙 − 𝒛 !

!• Augmented 
Lagrangian:

𝐿+
(1233) 𝒙, 𝒛, 𝒖 = 𝑓 𝒙 + 𝑔 𝒛 +

𝜌
2 𝑫𝒙 − 𝒛 + 𝒖 !

! −
𝜌
2 𝒖 !

!
𝒖 = 1/𝜌 𝒚



ADMM
𝐿+
(1233) 𝒙, 𝒛, 𝒖 = 𝑓 𝒙 + 𝑔 𝒛 +

𝜌
2 𝑫𝒙 − 𝒛 + 𝒖 !

! −
𝜌
2 𝒖 !

!

𝑨 ∈ ℝ!×"

𝒛, 𝒖 ∈ ℝ(", 𝑫 =
𝑫'
𝑫0 ∈ ℝ("×"

𝒙 ∈ ℝ" unknown image

for TV regularizer

for denoising or other regularizers

matrix describing image formation model

𝒛, 𝒖 ∈ ℝ", 𝑫 = 𝑰 ∈ ℝ"×"



ADMM

𝒙 ← prox5,+ 𝒛 = arg	min7	𝐿+
(1233) 𝒙, 𝒛, 𝒖 = arg	min𝒙	𝑓 𝒙 +

𝜌
2
𝑫𝒙 − 𝒛 + 𝒖 !

!

𝒛 ← prox8,+ 𝑫𝒙 = arg	min9	𝐿+
(1233) 𝒙, 𝒛, 𝒖 = arg	min𝒛	𝑔 𝒛 +

𝜌
2
𝑫𝒙 − 𝒛 + 𝒖 !

!

while not converged:

• Alternating gradient descent approach to solving 

Augmented Lagrangian: 

𝒖	 ← 𝒖 + 𝑫𝒙 – 𝒛

𝐿+
(1233) 𝒙, 𝒛, 𝒖 = 𝑓 𝒙 + 𝑔 𝒛 +

𝜌
2 𝑫𝒙 − 𝒛 + 𝒖 !

! −
𝜌
2 𝒖 !

!



𝒙 ← prox ⋅ !,, 𝒛 = arg	min𝒙
1
2 𝑨𝒙 − 𝒃 (

( +
𝜌
2 𝑫𝒙 − 𝒛 + 𝒖 (

(,
𝒙	– update:

ADMM

𝒙 ← 𝑨𝑻𝑨 + 𝜌𝑫𝑻𝑫 23 𝑨𝑻𝒃 + 	𝜌𝑫𝑻(𝒛 − 𝒖)

(𝑨 (𝒃

• Same general x-update as HQS, use matrix-free iterative solver, 
such as the conjugate gradient method, to solve O𝑨𝒙 = O𝒃 (e.g., 
scipy.sparse.linalg.cg)



ADMM
𝒛	– update for TV regularizer in closed form:

𝒛 ← prox ⋅ ",, 𝒗 = arg	min+	𝜆 𝒛 3 +
,
(
𝒗 − 𝒛 (

(= 𝒮4 𝒗 , 𝒗 = 𝑫𝒙 + 𝒖

𝒛	– update for denoising-based regularizer in closed form:

𝒛 ← prox𝒟,+ 𝒙 + 𝒖 = arg	min9 	𝜆Ψ 𝒛 + +
!
𝒙 − 𝒛 + 𝒖 !

! = 𝒟 𝒙 + 𝒖, 𝜎! = ;
+

à Same z-update rules as HQS!



ADMM
ADMM for inverse problem with denoiser

ADMM for inverse problem with TV



ADMM – Results
Least Norm HQS+TV HQS+DnCNN ADMM+DnCNNADMM+TV
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PSNR 12.3

PSNR 9.7

PSNR 33.7

PSNR 15.4

PSNR 32.0

PSNR 16.3

PSNR 44.0

PSNR 15.2

PSNR 42.2

4x

PSNR 10.4 PSNR 18.6 PSNR 26.0 PSNR 19.6 PSNR 34.7

PSNR 30.5



Back to the Bayesian Perspective of 
Inverse Problems

Note: the following material is optional and 
not part of any homework or the midterm!



Bayesian Perspective of Gaussian Noise

𝒃 = 𝑨𝒙 + 𝜼,• Image formation model:

𝑝 𝒃|𝒙, 𝜎 =Y
783

!
𝑝 𝒃7|𝒙7 , 𝜎 ∝ 𝑒2

𝒃2𝑨𝒙 !
!

(;!
• Joint probability of 

all observations:

𝒃 ∈ ℝ! , 𝒙 ∈ ℝ",𝑨 ∈ ℝ!×"

𝑝 𝒙|𝒃, 𝜎 =
𝑝 𝒃|𝒙, 𝜎 𝑝 𝒙

𝑝 𝒃 ∝ 𝑝 𝒃|𝒙, 𝜎 𝒑 𝒙• Bayes’ rule:

𝒙!<= = arg	min𝒙 	− log 𝑝 𝒙|𝒃, 𝜎

• Maximum-a-posterior (MAP) solution:

= arg	min𝒙
1
2𝜎( 𝒃 − 𝑨𝒙 (

( +Ψ 𝒙



Bayesian Perspective of Poisson Noise

𝒃 = 𝒫 𝑨𝒙 ,• Image formation model:

𝑝 𝒃|𝒙 =Y
783

!
𝑝 𝒃7|𝒙• Joint probability of 

all observations:

𝒃 ∈ ℝ! , 𝒙 ∈ ℝ",𝑨 ∈ ℝ!×"

• Probability of 
observation 𝑖: 𝑝 𝒃7|𝒙 =

𝑨𝒙 7
𝒃#	𝑒2 𝑨𝒙 #

𝒃7!

=Y
783

!
𝑒$>? 𝑨𝒙 # 𝒃# a 𝑒2 𝑨𝒙 # a

1
𝒃7!



Bayesian Perspective of Poisson Noise

𝒃 = 𝒫 𝑨𝒙 ,• Image formation model: 𝒃 ∈ ℝ! , 𝒙 ∈ ℝ",𝑨 ∈ ℝ!×"

𝑝 𝒙|𝒃, 𝜎 =
𝑝 𝒃|𝒙, 𝜎 𝑝 𝒙

𝑝 𝒃 ∝ 𝑝 𝒃|𝒙, 𝜎 𝑝 𝒙• Bayes’ rule:

• Maximum-a-posterior (MAP) solution:

𝒙!<= = arg	min' 	− log 𝑝 𝒙|𝒃, 𝜎 = −log 𝑝 𝒃|𝒙 − log 𝑝 𝒙

= arg	min' −	log 𝑝 𝒃|𝒙 + 𝜆Ψ 𝒙



ADMM+TV for Poisson Noise & Nonnegativity

• Scaled 
Augmented 
Lagrangian:

𝐿+
(1233) 𝒙, 𝒛, 𝒖 =;

<
𝑔< 𝒛< +

𝜌
2 𝑲𝒙 − 𝒛 + 𝒖 !

! −
𝜌
2 𝒖 !

!

• Objective function: minimize' −	log 𝑝 𝒃|𝒙 + 𝜆Ψ 𝑫𝒙

minimize ',+ − log 𝑝 𝒃|𝒛3 + 𝜆3 𝒛( 3 + ℐℝ$ 𝒛A

subject	to	
𝑨
𝑫
𝑰
𝒙 −

𝒛3
𝒛(
𝒛A

= 0

• Reformulate as:

𝑔# 𝒛# 𝑔$ 𝒛$ 𝑔% 𝒛%

𝑲 𝒛

ℐℝ! 𝑣 = A0 𝑣 > 0
∞ otherwise

• Indicator function:

includes 𝑨 does not include 𝑨 



ADMM+TV for Poisson Noise & Nonnegativity

𝒙 ← prox ! ' ,# 𝒛 = arg	min$ 	𝐿#
(&'(() 𝒙, 𝒛, 𝒖 = arg	min𝒙

1
2
𝑲𝒙 − 𝒛 + 𝒖 +

+

𝒛𝒊 ← prox-(,# 𝒙 = arg	min.( 	𝐿#
(&'(() 𝒙, 𝒛, 𝒖 = arg	min.( 	𝑔/ 𝒛/ +

𝜌
2
𝑲𝒙 − 𝒛 + 𝒖 +

+

while not converged:

• Alternating gradient descent approach to solving 

Augmented Lagrangian: 

𝐿+
(1233) 𝒙, 𝒛, 𝒖 =;

<
𝑔< 𝒛< +

𝜌
2 𝑲𝒙 − 𝒛 + 𝒖 !

! −
𝜌
2 𝒖 !

!

𝒖	 ← 𝒖 + 𝑲𝒙 – 𝒛

for all i:



ADMM+TV for Poisson Noise & Nonnegativity

𝒙 ← prox ! ' ,# 𝒛 = arg	min$ 	𝐿#
(&'(() 𝒙, 𝒛, 𝒖 = arg	min𝒙

1
2
𝑲𝒙 − 𝒛 + 𝒖 +

+

𝒛𝒊 ← prox-(,# 𝒙 = arg	min.( 	𝐿#
(&'(() 𝒙, 𝒛, 𝒖 = arg	min.( 	𝑔/ 𝒛/ +

𝜌
2
𝑲𝒙 − 𝒛 + 𝒖 +

+

while not converged:

• Derivation of all these proximal operators in the course notes on 

Noise, Denoising, and Image Reconstruction with Noise!

𝒖	 ← 𝒖 + 𝑲𝒙 – 𝒛

for all i:



ADMM+TV for Poisson Noise & Nonnegativity

Blurry & Noisy Measurements Richardson-Lucy Method
(maximum likelihood solution)

ADMM+TV+Nonnegativity
(maximum-a-posteriori solution)



References and Further Reading
Must read: EE367 course notes on Solving Regularized Inverse Problems with ADMM!

Optional read: EE367 course notes on Noise, Denoising, and Image Reconstruction with Noise

ADMM

• S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein “Distributed optimization and statistical learning via the alternating direction method of multipliers”, Foundation and Trends in 
Machine Learning, 2001

Single-pixel Imaging
• M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, R. Baraniuk “Single-pixel imaging via compressive sampling”, IEEE Signal Processing Magazine 2008


