Phase Retrieval and Computer-generated Holography

EE367/CS448I: Computational Imaging

stanford.edu/class/ee367

Lecture 13

Gordon Wetzstein Stanford University

Brief Recap of (some) Wave Optics

 Free-space wave propagation is often modeled by the Fourier transform of the field, i.e., for large distances or with lenses

Cannot measure complex field, only intensity (i.e., amplitude squared)

Phase Retrieval @ SLAC

x-ray crystallography or single-particle imaging (SPI)

Applications of Phase Retrieval

- Crystallography
- Transmission electron microscopy
- Astronomy
- Coherent diffractive imaging
- Fourier ptychography
- Lensless imaging
- Computer-generated holography
- ..

- Objective function: minimize_x $J(x) = \frac{1}{2} ||Fx| b||_2^2$
- F is discrete Fourier transform matrix, b are amplitude-only measurements, x is complex-valued unknown vector

• Subgradient of objective:
$$F^H\left((|Fx|-b) \circ \frac{Fx}{|Fx|}\right) \in \nabla J(x)$$

 Absolute value not differentiable, but can work with subgradients

• (Sub)gradient descent:

$$x^{(k+1)} = x^{(k)} - \alpha \nabla J(x)$$

$$= x^{(k)} - \alpha F^H F x^{(k)} + \alpha F^H \left(b \circ \frac{F x^{(k)}}{|F x^{(k)}|} \right)$$

$$\stackrel{\alpha=1}{\approx} F^H \left(b \circ \frac{F x^{(k)}}{|F x^{(k)}|} \right)$$

• Interesting: $b \circ \frac{ae^{i\phi}}{|ae^{i\phi}|} = be^{i\phi}$

Generalized Gerchberg-Saxton or Error Reduction (ER)
 algorithm [GS 1972, Fienup 1982]:

$$x^{(k+1)} = \Pi_{\mathcal{C}}\left(F^H\left(b \circ \frac{Fx^{(k)}}{|Fx^{(k)}|}\right)\right)$$
• Projection on feasible set $\Pi_{\mathcal{C}}$ enforces additional constraints, such as nonnegativity of x or limited support, via projected

Approach is 40 years old, but should be a great starting point

(sub)gradient descent

Phase Retrieval - Example

measurements

Simulated

Sir Charles Wheatstone, 1838

Virtual Image d

Problems:

- fixed focal plane
- no focus cues ☺
- vergenceaccommodation conflict (nausea)

Computational Near-eye Displays with Focus Cues

Gaze-contingent Varifocal Displays

Shiwa et al. 1996; Liu et al. 2008;

Multiplane Displays

Rolland et al. 2000; Akeley et al. 2004

Near-eye Light Field Displays

Lanman and Luebke 2013; Hua and Javidi 2014; Huang et al. 2015

Holographic Near-eye Displays

Holographic Near-eye Displays

- 1. Only target intensity is provided, need to "make up" some target phase (e.g., 0)
- 2. Free-space propagation from target to SLM plane
- 3. Propagated field at SLM plane is complex, but SLM can only address phase → need phase encoding

SLM phase

Target Image

propagate

Free-space propagation:

$$u_{slm}(x,y) = \mathcal{F}^{-1} \left\{ \mathcal{F} \left\{ a(x,y) e^{i\phi(x,y)} \right\} \mathcal{H} \left(f_x, f_y, z \right) \right\}$$

$$\mathcal{H} \left(f_x, f_y \right) = \begin{cases} e^{-i\frac{2\pi}{\lambda}} \sqrt{1 - (\lambda f_x)^2 - (\lambda f_y)^2} z & \text{if } \sqrt{f_x^2 + f_y^2} < \frac{1}{\lambda} \\ 0 & \text{otherwise} \end{cases}$$

[Goodman, Fourier Optics]

SLM phase

Target Image

Double phase-amplitude coding:

$$u_{slm}(x,y) = a(x,y)e^{i\phi(x,y)} = 0.5\left(e^{i\phi_1(x,y)} + e^{i\phi_2(x,y)}\right)$$
$$\phi_1(x,y) = \phi(x,y) - \cos^{-1}(a(x,y))$$
$$\phi_2(x,y) = \phi(x,y) + \cos^{-1}(a(x,y))$$

propagate backward

Computer-generated Holography: Iterative Methods

$$\underset{\phi}{\text{minimize }} \mathcal{L}\left(|\widehat{f}\left(\phi\right)|, a_{\text{target}}\right)$$

Free-space propagation model $\text{Unknown physical propagation}, \widehat{f} \neq f$

Iterations:
$$\phi^{(k)} \leftarrow \phi^{(k-1)} - \alpha \left(\frac{\partial \mathcal{L}}{\partial \phi}\right)^T \mathcal{L}\left(\widehat{f}\left(\phi^{(k-1)}\right)\right), a_{\text{target}}\right)$$

Camera-in-the-loop (CITL) Optimization

[Peng et al., SIGGRAPH & SIGGRAPH Asia 2020]

Camera-in-the-loop (CITL) Hologram Optimization

SGD with the ASM Model

Proposed CITL CGH

Neural Holography

Neural Holography

Camera-calibrated Wave Propagation Model

Neural Holography

Camera-calibrated Wave Propagation Model

Gerchberg-Saxton

Neural Holography (CITL) 2020 Results

3D Neural Holography on Emerging MEMS Phase SLMs

Displayed patterns on phase SLM

Holograms captured with our prototype

Additional Benefits of Holographic Near-eye Displays

Thin VR Display Form Factors

Maimone et al., SIGGRAPH 2020

Kim et al., SIGGRAPH 2022

Other:

- Light-efficient AR Displays
- Prescription correction (including astigmatism and higher-orders)
- Correcting optical aberrations

. . .

Acknowledgements

Evan Peng

Suyeon Choi

Nitish Padmanaban

Jonghyun Kim

Manu Gopakumar

Gordon Wetzstein stanford.edu/~gordonwz

Computational Imaging Lab Stanford University EE & CS

computationalimaging.org

References and Further Reading

Phase Retrieval

- · R. Gerchberg, W. Saxton, "A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures", Optik 1972
- J. Fienup, "Phase retrieval algorithms: a comparison", Applied Optics 1982
- ...

Holographic Near-eye Displays

- A. Maimone, A. Georgiou, J.S. Kollin, "Holographic near-eye displays for virtual and augmented reality", ACM SIGGRAPH 2017
- N. Padmanaban, Y. Peng, G. Wetzstein, Holographic near-eye displays based on overlap-add stereograms", ACM SIGGRAPH Asia 2019
- Y. Peng, S. Choi, N. Padmanaban, G. Wetzstein, "Neural Holography with Camera-in-the-loop Training", ACM SIGGRAPH Asia 2020
- . S. Choi, J. Kim, Y. Peng, G. Wetzstein, "Optimizing image quality for holographic near-eye displays with Michelson Holography", OSA Optica 2021
- S. Choi, M. Gopakumar, Y. Peng, J. Kim, G. Wetzstein, "Neural 3D Holography: Learning Accurate Wave Propagation Models for 3D Holographic Virtual and Augmented Reality Displays"
- · Y. Peng, S. Choi, J. Kim, G. Wetzstein, "Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration", Science Advances 2021
- L. Shi, B. Li, C. Kim, P. Kellnhofer, W. Matusik, "Towards real-time photorealistic 3D holography with deep neural networks", Nature 2021

Computational Near-eye Displays with Focus Cues

• See review paper/talk for overview: G. Wetzstein, "Computational Eyeglasses and Near-Eye Displays with Focus Cues", SPIE AR/VR/MR Conference 2020