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Brief Recap of (some) Wave Optics

Free-space wave propagation is often modeled by the Fourier

transform of the field, i.e., for large distances or with lenses

Cannot measure complex field, only intensity (i.e., amplitude

squared)



Phase Retrieval
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Phase Retrieval @ SLAC

x-ray crystallography or single-particle imaging (SPI)
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Applications of Phase Retrieval

Crystallography

Transmission electron microscopy
Astronomy

Coherent diffractive imaging
Fourier ptychography

Lensless imaging

Computer-generated holography



Phase Retrieval

1
Objective function: ~ minimizey J(x) = Z|[|Fx] - bll3
F is discrete Fourier transform matrix, 6 are amplitude-only

measurements, xis complex-valued unknown vector

Fx
Subgradient of objective: I <(|Fx| —b)e |Fx|> € V/(x)

Absolute value not differentiable, but can work with

subgradients



Phase Retrieval
* (Sub)gradient descent:
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Phase Retrieval

Generalized Gerchberg-Saxton or Error Reduction (ER)

algorithm [GS 1972, Fienup 1982]:
Fx ()
x(k+1) = HC FH <b o >

Projection on feasible set I1 enforces additional constraints,
such as nonnegativity of x or limited support, via projected
(sub)gradient descent

Approach is 40 years old, but should be a great starting point
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Holographic Displays

|

https://www.youtube.com/watch?v=sQS6_DbYIAw



Sir Charles Wheatstone, 1838




Virtual Image
Problems:

» fixed focal plane
* no focus cues ®
* vergence-

accommodation
conflict (nausea)




Computational Near-eye Displays with Focus Cues



Holographic Near-eye Displays

Collimating

Laser :
Optics SLM Target Image
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[Maimone et al. 2017; Padmanaban et al. 2019; Peng et al. 2020; Shi et al. 2021...]



Holographic Near-eye Displays

Collimating Focal length f l Eye box b
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[Padmanaban et al. 2019]



Computer-generated Holography: Direct Methods

SLM phase Target Image
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Computer-generated Holography: Direct Methods

e SLM phase Target Image

Eropagate
backward

1. Only target intensity is provided, need to “make up” some target phase (e.g., 0)
2. Free-space propagation from target to SLM plane

3. Propagated field at SLM plane is complex, but SLM can only address phase =
need phase encoding




Computer-generated Holography: Direct Methods

[ SLM phase Target Image
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Free-space propagation:

usim (5,9) = FF {a ) 9D} 9 (£, fy.2))

H (fu fy) = le"'zT”J““f*’z—Wz if Jf2+ 7 < 4
0

otherwise

[Goodman, Fourier Optics]



Computer-generated Holography: Direct Methods

[ SLM phase Target Image

= : Eropagate
' : r backward

Double phase-amplitude coding:

Usim (%, 1) = a(x,y) 9= = 0.5 (ei¢1(x’y) + ei¢2(x’y))

¢1(x,y) = ¢ (x,y) — cos™ ' (a(x,y))
2 (x,y) = ¢ (x,y) + cos™ ' (a(x,y))

[Hsueh and Sawchuk 1978; Maimone et al. 2017]



Computer-generated Holography: lterative Methods
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[Peng et al., SIGGRAPH & SIGGRAPH Asia 2020]

Camera-in-the-loop (CITL) Optimization
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[Peng et al., SIGGRAPH & SIGGRAPH Asia 2020]

Camera-in-the-loop (CITL) Optimization
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Camera-in-the-loop (CITL) Hologram Optimization

SD with the ASM Model v Proposed CITL CGH
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Neural Holography
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SIGGRAPH ASIA 2021; SIGGRAPH 2022; ..

., SIGGRAPH Asia 2020; Choi et al.,

[Peng et al



Neural Holography
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[Peng et al., SIGGRAPH Asia 2020; Choi et al., SIGGRAPH ASIA 2021; SIGGRAPH 2022; ...]



Neural Holography

Input:
2D, 2.5D RGBD, 3D focal
stack, 4D light field, ...

Output: -I Y |
SLM phase ‘}EN&» &, P
A CNN .
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Camera-calibrated Wave Propagation Model

[Peng et al., SIGGRAPH Asia 2020; Choi et al., SIGGRAPH ASIA 2021; SIGGRAPH 2022; ...]
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Gerchberg—Saxton




Neural Holography (CITL) 2020 Results
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[Peng et al., SIGGRAPH & SIGGRAPH Asia 2020]



3D Neural Hom?a on Emergin “N'ﬁEI\/IS Phase SLMs
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Experimentally Captured Results.



3D Neural Holography on Emerging MEMS Phase SLMs

Displayed patterns on phase SLM Holograms captured with our prototype

[Choi, Gopakumar et al., SIGGRAPH 2022] Experimentally Captured Results.



Additional Benefits of Holographic Near-eye Displays

Thin VR Display Form Factors Other:
» Light-efficient AR Displays

» Prescription correction (including
astigmatism and higher-orders)

» Correcting optical aberrations

Maimone et al., SIGGRAPH 2020 Kim et al.,, SIGGRAPH 2022
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