Morphological Image Processing

= Binary dilation and erosion

= Set-theoretic interpretation

= Opening, closing, morphological edge detectors
= Hit-miss filter

= Morphological filters for gray-level images

m Cascading dilations and erosions

= Rank filters, median filters, majority filters
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Binary image processing

= Binary images are common

e Intermediate abstraction in a gray-scale/color image analysis system
* Thresholding/segmentation
* Presence/absence of some image property

e Text and line graphics, document image processing

= Representation of individual pixels as 0 or 1, convention:
e foreground, object = 1 (white)
e background = 0 (black)

m Processing by logical functions is fast and simple

= Shift-invariant logical operations on binary images:
“morphological’ image processing

= Morphological image processing has been generalized to
gray-level images via level sets
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Shift-invariance

= Assume that digital images f [x,y] and g[x,y] have infinite support

[x,y] e{...,—z,—l,(),l,z,...} X {...,_2,_1,(),1,2,...}

... then, for all integers a and b

f [x, y] Shift- g [x, y]
— | Invariant —— "
system
f[x—ay-b] Shift- g[x—a,y—b]
— | Invariant >
system

= Shift-invariance does not imply linearity (or vice versa).
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Structuring element

= Neighborhood “window” operator

-l e Jen,

“structuring element”

= Example structuring elements ny:

ox5 square Cross
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Binary dilation

g[x,y] = OR[W{f[x,y]}] = dilate(f,W)
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Binary dilation with square structuring element

g[x,y] = OR[W{f[x,y]}] = dilate(f,W)

= EXxpands the size of
1-valued objects

=  Smoothes object
boundaries

s Closes holes and gaps

dilation with dilation with

Original (701x781) 3x3 structuring element 7X7 structuring element
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Binary erosion

g[x,y] = AND[W{f[x,y]}} = erode

/4

—
\-—-/

HEEEN | EEEEN
HEEEo/o]o]o/ NN
| | IBEEEE | |

EEEENN RN L

| | MeEEE | |
HEEN (oo oNNNN
HEEENoc-NENEEN
HEEEEEEEEEEE
HEEEEEEEEEEE
HEEEEEEEEEEEN |y

flx,y] L1,

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Morphological Image Processing 7



Binary erosion wit

g[x, y] = AND

. erosion with
Original (701x781)

N square structuring element

:W{f[x,y]}} = erode(f,W)

m  Shrinks the size of
1-valued objects

=  Smoothes object
boundaries

= Removes peninsulas,
fingers, and small
objects

erosion with

3x3 structuring element 7X7 structuring element
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Relationship between dilation and erosion

= Duality: erosion is dilation of the background

dilate( f ,W)zNOT erode( NOT f ,W)

——
|
|

erode( f ,W)zNOT :dilate NOT| f ,W)

m But: erosion is not the inverse of dilation
f[x,y] # erode(dilate(f,W),W)
£ dilate(erode(f,W),W)
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Example: blob separation/detection by erosion

Original binary image Erosion by 30x30 Erosion by 70x70 Erosion by 96x96
Circles (792x892) structuring element structuring element structuring element
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Example: blob separation/detection by erosion

Aea B ||

Original binary image Erosion by disk-shaped Erosion by disk-shaped Erosion by disk-shaped
Circles (792x892) structuring element structuring element structuring element
Diameter=15 Diameter=35 Diameter=48
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Example: chain link fence hole detection
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Original grayscale image Fence thresholded Erosion with 151x151
Fence (1023 x 1173) using Otsu’s method “cross” structuring element
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Consider a binary image of infinite extent that is O everywhere, except for
a single pixel f [3,3]=1. After performing dilation with an L-shaped
structuring element (SE) of width 3 pixels, how does the resulting image
look like?

(a) All zero, the single pixel has been removed.

(b) L-shaped SE shifted to position 3,3

(c) L-shaped SE rotated by 180 degrees and shifted to position 3,3
(d) L-shaped SE rotated by 180 degrees and shifted to position -3,-3
(e) None of the above

Answer the same question, but now performing erosion in lieu of dilation.
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Set-theoretic interpretation

: : Continuous (x,y).
= Set of object pixels Works for discrete [x,y]
F = {(x,y) . f(x,y) = 1} in the same way.
s Background: complement of foreground set
F°= {(x,y):f(x,y)=0}
= Dilation is Minkowski set addition
G=F® ny Commutative and associative!

B {(“px»yﬂ?y):(x»y)e F’(Px’py)enxy}
— F

(o, \)

translation of F by vector ( P, py)
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Set-theoretic interpretation: dilation
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Set-theoretic Iinterpretation: erosion

X

y ty

Not commutative!
Not associative!

Reversed structuring
element

Minkowski set subtraction
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Opening and closing

= Goal: smoothing without size change
= Open filter

FW)W,
W)W,

. (
open( f ,W] = dilate \erode(
( ;.

close( 1, W] = erode \dllate(
m  Open filter and close filter are biased

e Open filter removes small 1-regions

e Close filter removes small O-regions

e Bias is often desired for enhancement or detection!

» Unbiased size-preserving smoothers
close — open( f ,W) = close(open( f ,W),W]

)
J

= close-open and open-close are duals, but not inverses of each other.

m Close filter

open — close( f ,W) = open(close( f ,W),W
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Small hole removal by closing

gttt

fy mask Dilation Closing 10x10 Difference to iinal mask
10x10

Original biné
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Which of the following holes in an object are filled by a morphological
closing operation with a 10x10 square structuring element.

(a) 5x5 square

(b) 6x6 square

(c) 9x9 square

(d) 10x10 square

(e) 10x10 square rotated by 45 degrees
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Morphological edge detectors
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Recognition by erosion

Binary image f open(NOT [ f ],W): dilate(erode(NOT [ f ],W),W)

INTEREST-POINT DETECTION

Feature extraction typically starts by finding the salient
interest points in the image. For robust image matching, we
desire interest points to be repeatable under perspective
transformations (or, at least, scale changes, rotation, and
translation) and real-world lighting variations. An example of
feature extraction is illustrated in Figure 3. To achieve scale
invariance, interest points are typically computed at multiple
scales using an image pyramid [15]. To achieve rotation
invariance, the patch around each interest point is canoni-
cally oriented in the direction of the dominant gradient.
[llumination changes are compensated by normalizing the
mean and standard deviation of the pixels of the gray values
within each patch [16].

1400

2000

Structuring
element W
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Recognition by erosion

Structuring
element W

<
<
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Recognition by erosion

Binary image f open(NOT [ f ],W): dilate(erode(NOT [ f ],W),W)

INTEREST-POINT DETECTION e trourreir 1l
Feature extraction typically starts by finding the salient 1l
interest points in the image. For robust image matching, we
desire interest points to be repeatable under perspective
transformations (or, at least, scale changes, rotation, and
translation) and real-world lighting variations. An example of
feature extraction is illustrated in Figure 3. To achieve scale
invariance, interest points are typically computed at multiple
scales using an image pyramid [15]. To achieve rotation
invariance, the patch around each interest point is canoni-
cally oriented in the direction of the dominant gradient.
[llumination changes are compensated by normalizing the
mean and standard deviation of the pixels of the gray values
within each patch [16].

1400

2000

Structuring
element W

62

18
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Recognition by erosion

INTERES T-POINT DETECT]

Structuring
element W

18
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Hit-miss filter

Binary image f dilate(erode(NOT [ f ],V) &erode( f ,W),W)

INTEREST-POINT DETECTION

Feature extraction typically starts by finding the salient
interest points in the image. For robust image matching, we
desire interest points to be repeatable under perspective
transformations (or, at least, scale changes, rotation, and
translation) and real-world lighting variations. An example of
feature extraction is illustrated in Figure 3. To achieve scale
invariance, interest points are typically computed at multiple
scales using an image pyramid [15]. To achieve rotation
invariance, the patch around each interest point is canoni-
cally oriented in the direction of the dominant gradient.
[llumination changes are compensated by normalizing the
mean and standard deviation of the pixels of the gray values
within each patch [16].

1400

2000
Structuring | Structuring
elementV element W
18 i
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Hit-miss filter

Structuring
elementV

18

Structuring
element W~
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Morphological filters for gray-level images

= Threshold sets of a gray-level image f [X,y]

Tg(f[x,y]):{[x,y]:f[x,y]ZQ}, —00 < @ <400

= Reconstruction of original image from threshold sets

f[x,y] = sup{@:[x,y] eTg(f[x,y])}

= Idea of morphological operators for multi-level
(or continuous-amplitude) signals
e Decompose into threshold sets
e Apply binary morphological operator to each threshold set

e Reconstruct via SUPremum operation
e Gray-level operators thus obtained: flat operators
= Flat morphological operators and thresholding are commutative
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Dilation/erosion for gray-level images

= Explicit decomposition into threshold sets not required in practice
= Flat dilation operator: local maximum over window W

g[x,y] = max{W{f[x,y]}} = dilate(f,W)

= Flat erosion operator: local minimum over window W

g[x,y] = min{W{f[x,y]}} = erode(f,W)

= Binary dilation/erosion operators contained as special case
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1-d illustration of erosion and dilation

Structure element length = 21
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Image example

N

Original Dilation Erosion
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Flat dilation with different structuring elements

Digital Image \
Pp oce ssin g

Origihélﬁ 20 degree Ilne

. 9 points 2 horizontal lines
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Example: counting coins

e i

Original thresholded 1 connected component 20 connected

components
o ®
D
0®® ® D
), 0 0 .
% O

. dilation thresholded after dilation
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Example: chain link fence hole detection
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Original grayscale image Flat erosion with 151x151 Binarized by Thresholding
Fence (1023 x 1173) “cross” structuring element
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For the fence hole detection example, which method would you expect to
give the better results in the presence of noise:

(a) Flat erosion with 151x151 cross, followed by thresholding
(b) Thresholding of the image, followed by erosion with a 151x151 cross

(c) Neither has an advantage over the other
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Morphological edge detector

\\ur A

original f dilation g ded
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Beyond flat morphogical operators

= General dilation operator

g[x,y]: srg{f[x—a,y—ﬂ]+w[a,ﬁ]} = s;g){w[x—a,y—ﬁ}+f[a,ﬂ]}

= Like linear convolution, with SUP replacing summation, addition replacing multiplication
= Dilation with “unit impulse”

d[a,ﬁ]:{o a=p=0

—o0  else

does not change input signal:

f[x,y]:szg{f[x—a,y—ﬁ]+d[a,ﬁ]}
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Flat dilation as a special case

O Findw[a,ﬂ] such that
f[x,y] = s;%){f[x— a,y—ﬂ]+ w[a,ﬂ]} = dilate(f,W)

s Answer:

r

0 [a,ﬁ] ell

|—o0 else

w[a,ﬁ] =<

= Hence, write in general
g[x,y] = sug{f[x— a,y—ﬁ]+ w[a,ﬁ]}
= dilate( [ ,w) = dilate(w, [)
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General erosion for gray-level images

m General erosion operator

g[x,y] = icgg{f[x -a,y —ﬁ]— w[a,ﬁ]} = erode(f,w)
= Dual of dilation

g[xy]=inf{f[x-a.y-p]-w]a.p]]
= —Sup{—f[x— a,y—ﬁ]+ w[az,ﬁ]} = —dilate(— f,w)
a.p

= Flat erosion contained as a special case
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Cascaded dilations

dilate( f,w,,w, ) dilate(f,w,w,,w, )

dilate[dilate( f ,wl),wz] = dilate( f ,w)

where w= dilate(wl, w2)
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Cascaded erosions

s Cascaded erosions can be lumped into single erosion

erode[erode( 1, wl),wz] = erode[—dilate(— 1, wl),w2:
= —dilate:dilate(— 1, Wl),W2:
= —dilate [— f ,W)
— erode( f ,w)

where w= dilate(wl, wz)

= New structuring element (SE) is not the erosion of one SE
by the other, but dilation.
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Fast dilation and erosion

= Idea: build larger dilation and erosion operators by cascading simple, small
operators

x Example: binary erosion by 11x11 window

ol o] S | e
11511 window 5 stages
| Erosion with Erosion with
glx, y| g%y« 3xLwindow | | 3x1window
: | ) stéges |
120 AND per pixel 2x10 = 20 AND per pixel
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Which of the following schemes performs dilation with a 5x5 square?
(a) Two cascaded dilations with a 3x3 structuring element

(b) Two cascaded dilations with a 1x3 structuring element, followed by
two cascaded dilations with a 3x1 structuring element

(c) NOT operation applied to invert the image, followed by two cascaded
erosions with a 1x3 structuring element, followed by two cascaded

erosions with a 3x1 structuring element, followed by another NOT
operation
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Rank filters

m Generalisation of flat dilation/erosion: in lieu of min or max value in window,
use the p-th ranked value

= Increases robustness against noise

m Best-known example: median filter for noise reduction
= Concept useful for both gray-level and binary images
= All rank filters are commutative with thresholding
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Median filter

m  Gray-level median filter

g[x,y] = median[W{f[x,y]}] = median(f,W)

= Binary images: majority filter

g[x,y] = ]\MJ[W{f[x,y]}} = majority(f,W)
. Self-dua:;Zdian( f ,W) = —[median(— f, W)}

majority( f ,W) = NOT [majority(NOT [ f ],Wﬂ
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Majority filter: example

| Binay iage with

5% 'Salt&Pepper’ noise 3x3 majority filter 20% ‘Salt&Pepper’ noise 3x3 majority filter
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Median filter: example

riq R e

Original image 5% ‘Salt&Pepper’ noise 3x3 median filtering 7X7 median filtering

- . 3
N " Ak TN
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Example: non-uniform lighting compensation

Original image Dilation (local max) Rank filter
1632x1216 pixels 61x61 structuring element 10st brightest pixel
61x61 structuring element
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