Digital Image Processing
EE368/CS232

Bernd Girod
Department of Electrical Engineering
Stanford University
What is an image?

[Albrecht Dürer, 1525]
What is an image?

- **Image**: a visual representation in form of a function $f(x,y)$ where f is related to the brightness (or color) at point (x,y)
- Most images are defined over a rectangle
- Continuous in amplitude and space

-Albrecht Dürer, 1525-
Digital Images and Pixels

- **Digital image**: discrete samples $f[x,y]$ representing continuous image $f(x,y)$
- Each element of the 2-d array $f[x,y]$ is called a **pixel** or **pel**
 (from “picture element“)
Color Components

Red $R[x,y]$
Green $G[x,y]$
Blue $B[x,y]$

Monochrome image

$R[x,y] = G[x,y] = B[x,y]$
Why do we process images?

- **Acquire an image**
 - Correct aperture and color balance
 - Reconstruct image from projections

- **Prepare for display or printing**
 - Adjust image size
 - Color mapping, gamma-correction, halftoning

- **Facilitate picture storage and transmission**
 - Efficiently store an image in a digital camera
 - Send an image from space

- **Enhance and restore images**
 - Touch up personal photos
 - Color enhancement for security screening

- **Extract information from images**
 - Read 2-d bar codes
 - Character recognition

- **Many more ... image processing is ubiquitous**
Image Processing Examples

Mosaic from 33 source images

Mosaic from 21 source images

source: M. Borgmann, L. Meunier, EE368 class project, spring 2000.
Image Processing Examples

Face morphing

Source: Yi-Wen Liu and Yu-Li Hsueh, EE368 class project, spring 2000.
Image Processing Examples

Face Detection

source: Henry Chang, Ulises Robles, EE368 class project, spring 2000.
Image Processing Examples

Face Detection

source: Michael Bax, Chunlei Liu, and Ping Li, EE368 class project, spring 2003.
Image Processing Examples

Face Blurring for Privacy Protection
This image showing both laser and video imagery gives a sense of Stanley's adaptive vision capability.
EE368 Spring 2006 Project:
Visual Code Marker Recognition
EE368 Spring 2007 Project: Painting Recognition
EE368 Spring 2007 Project:
Painting Recognition
EE368 Spring 2008 Project:
CD Cover Recognition
CD Cover Recognition on Cameraphone
EE368/CS232 Topics

- Point operations/combining images/histograms
- Color science
- Image thresholding/segmentation
- Morphological image processing
- Image filtering, deconvolution, template matching
- Edge detection, keypoint detection
- Scale-space image processing
- Image matching, image registration
- Eigenimages
Image Processing and Related Fields

- Artificial Intelligence
- Machine Learning
- Computer Vision
- Machine Learning
- Image Coding
- Visual Perception
- Display Technology
- Mathematics, Information Theory
- Image Processing
- Robotics, Inspection, Photogrammetry
- M-d Signal Processing
- Imaging
- Imaging
- Computer Graphics
- Computational Photography
- Optical Engineering
- Computer Vision
EE368/CS232 Organisation

- Online course – no classroom lectures
- Not a MOOC – exclusively for Stanford students
- Weekly problem session: Th 1:15pm-2:05pm in Gates B03
- Office hours
 - David Chen, Fr 4:00-6:00 p.m., Packard 021 (SCIEN Lab)
 - Huizhong Chen, Th 4:00-6:00 p.m., Packard 021 (SCIEN Lab)
 - Bernd Girod: by appointment
- Class Piazza page:

 http://piazza.com/class#spring2014/ee368
EE368/CS232 Organisation

- Release of lecture videos with embedded quizzes, every Monday for 7 weeks
- Weekly homework assignments corresponding to video modules, due one week later, require computer + Matlab, solve individually
- First release on March 31 (first day of class)
- Late Midterm
 - 24-hour take-home exam
 - 3 slots, May 21-24
EE368/CS232 Final Project

- Individual or group project, plan for about 50-60 hours per person
- Develop, implement and test/demonstrate an image processing algorithm
- Project proposal due: April 30, 11:59 p.m.
- Project presentation: Poster session, June 2, 4-6:30 p.m.
- Remote SCPD students can alternatively submit a narrated video presentation
- Submission of written report and source code: June 6, 11:59 p.m.
EE368/CS232 Grading

- Participation: 10%
 (Online videos, quizzes, discussion forum)
- Homeworks: 20%
- Midterm: 30%
- Final project: 40%
- No final exam.
SCIEN Laboratory

- SCIEN = Stanford Center for Image Systems Engineering (http://scien.stanford.edu)
- Exclusively a teaching laboratory
- Location: Packard room 021
- 20 Linux PCs, scanners, printers etc.
 - Matlab with Image Processing Toolbox
 - Android development environment
- Access:
 - Door combination for lab entry will be provided by TA
 - Account on SCIEN machines will be provided to all enrolled in class
Mobile image processing (optional)

- 40 Motorola DROID cameraphones available for class projects (must be returned after, sorry)
- Lectures on Android image processing in first three weeks
- Android development environment on your own computer or in SCIEN lab
- Programming in Java (C++ for OpenCV)
Reading

- Slides available as pdf files on the class website (click on 🌐 for source code and data)
 https://www.stanford.edu/ee368

- Popular text books

- Software-centric books

- Comprehensive state-of-the-art

- Journals/Conference Proceedings
 - IEEE Transactions on Image Processing
 - IEEE International Conference on Image Processing (ICIP)
 - IEEE Computer Vision and Pattern Recognition (CVPR)
EE368/CS232 Final Project

- Develop, implement and test/demonstrate image processing algorithm(s)
- May or may not use an Android device
- Important dates
 - Project proposal due: **April 30, 11:59 p.m.**
 - Project presentation: Poster session, **June 2, 4-6 p.m.**
 - Submission of written report and source code: **June 6, 11:59 p.m.**
- Posters, reports & source code will be posted online
- Project grade based on
 - Technical quality, significance, and originality 50%
 - Written report 25%
 - Poster/demo 25%
Project proposal

- Written project proposal in pdf format
- Submit by email to ee368-spr1314-staff@lists.stanford.edu
- Submit early for a head start, but no later than deadline
- Proposal must contain:
 - Title
 - Name(s) and email address(es) of the student(s)
 - Description of the goals of the project and the work to be carried out (200-400 words)
 - 3+ scholarly references (web pages don’t count)
 - Indication whether you will use an Android device
- We will request a revision, if needed
- Approved proposals will be posted online
Project group and topic

- Groups of 2-3 students **strongly** encouraged
- Groups > 3 need special permission: provide compelling reason and work plan
- Use our Google Doc spreadsheet and Piazza to look for project partners – indicate general direction of interest
- Check out past proposals and projects in Final Projects section of class website
- Check journals and conference proceedings for ideas, e.g.,
 - IEEE Transactions on Image Processing
 - IEEE International Conference on Image Processing (ICIP)
 - IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
- Do not be overly ambitious in your project goals!
Midterm

- 24-hour take-home exam
- 3 slots, **May 21-24, 5 pm → 5 pm**
- Typically, students spend about 5-6 hours
- Need Matlab, computer, Internet access
- Preparation: review homeworks and online quiz questions
EE368/CS232 poster session

- Poster session June 2, 4-6 p.m., Packard Atrium
- Put up your poster by 4 p.m., attend the entire session, take poster down after 6 p.m.
- Spend 1/3 time with your poster, 2/3 time visiting other posters
- Be prepared to give a 3-4 minute presentation/demo
- Poster boards are 3 ft wide x 2 ft tall
- Poster printing help available from course staff
- Poster template available on class website
EE368/CS232 final project submission

Due June 6, 11:59 p.m.

- Written project report, 2000 words typical, 4000 words max
- zip archive of all source code written
- pdf of the poster
- Submit everything (except videos) by email to ee368-spr1314-staff@lists.stanford.edu
- If you have a demo, we encourage you to record a video and submit through class webpage
EE368/CS232 project report

- Submit as pdf, 2000 words typical, 4000 words max., not including references.
- Use IEEE conference paper as a template
 http://www.ieee.org/conferences_events/conferences/publishing/templates.html
- Include graphs, pictures, and references
- Observe the Stanford Honor Code
 - Do not copy or paraphrase text without proper attribution
 - Do not copy or modify figures without proper attribution
 - Never, ever manipulate, suppress, or make up experimental results
- Groups submit ONE report
- Include a break-down of who did what as an appendix to the report