
Star Mapping Algorithm
Darick W. LaSelle

dlaselle@stanford.edu (alt dwlaselle@gmail.com)

This paper proposes a project investigating how to map a set of points (presumed to be

stars) onto a star map. I will implement an algorithm that does star mapping against an

existing database, using a point matching algorithm.

Goal 1:

Develop a database that can accurately represent the stars both numerically and visually.

This will include identifying a way to visually display brightness. The database assembled

comes from the Saguaro Astronomy club [3]. I included a script that loads the data in from

a “manually pre-filtered” csv file. This script will cover the numeric representation of the

stars. In addition, this script is a precursor to “fingerprint files”. That is, it is a

representation of the position of all of the stars within a specified area of the sky (entered

in radians). Over the course of the project, I will run this algorithm multiple times to

assess different sizes of star maps (i.e. minimalist to test functionality, a complete map, the

visual sky, etc. This will also provide the ability to produce a star map around each star,

should it be desired (this will be useful in truth-testing.

Goal 2:

Be able to correctly map a “mock up” test map and match that to the database.

Goal 3:

Be able to correctly map a distorted (i.e. skewed images, added noise, etc) to the database.

Goal 4:

Be able to map real pictures of stars and match the database.

Goals 2 through 4 will be accomplished using a point matching algorithm. Point matching
algorithms have existed, and been well vetted, for many years. As a specific example, the
Institute for Aerospace and Astronautics of theTechnical University of Berlin uses point
matching to measure position and orientation on their satellites. [1] Additional work on this
application was published in 1994 in Academic Press Limited. [2] This early work identifies
that the concept is feasible, even with limited computing power. However, I was not able to
locate any detailed descriptions of the algorithms. The majority of the code developed for

mailto:dlaselle@stanford.edu

the star matching system and the data used to test the system has been organically
developed.

The use of point matching to identify patterns will roughly follow the following
algorithm:

 Identify a point

 Find an adjacent point (neighbor), and set it as a reference neighbor

 Find additional neighbors

 Match the parameters to associated truth files

 Score the comparisons

 Select a best match (if one exists)

Potential Roadblocks

 Image angles – while this point matching algorithm is intended to be independent of picture orientation, that
will need to be vetted

 Obstructions – If a star is covered by a tree or a cloud, a point in the fingerprint file will be unaccounted for.
This is also true for low intensity stars

 Noise – Reflections, satellites, planes, etc can also cause additional points to be found

 Processing power – This algorithm may shape up to be an σ
4
 operation on a large database (at a minimum

there are assumed to be 500 visible stars, while the database has 28,000+stars). Short of moving to a parallel
processing program, the run time on this algorithms are likely to be very time and processor intensive

Additional Notes

 Once the algorithm is running correctly for the point matching, a number of image processing techniques can
be used in order to generate a “map” of the stars from a real image. Notably, corner and feature detection
could be used here. However, at the time of this proposal, I believe that grayscale thresholding would be the
first step, followed by a series of opening and closing filters. At that point, either through further erosion, or
region labelling, I would reduce this to a point map (the Matlab “imregionalmax” command could be useful
here)

 A point matching algorithm has been successfully used in star finding algorithms. The “TUBSAT” project,
which was published in 1994 used this concept
(http://static.aminer.org/pdf/PDF/000/994/725/an_application_of_point_pattern_matching_in_astronautics.p
df)

 The idea of using a point matching technique is to be more robust and more specific than using feature based
image matching based on constellations. In particular, if only a partial constellation is visible, or there are
multiple constellations, feature matching may fail. However, point matching should theoretically be more
resistant to this, as it will be based on stars, and can by definition is only going to test a star that it can see.

Note: If I am unable to progress relatively quickly through this concept, I will switch to using a constellation
database.

[1] V. Paquin, “Point Pattern Matching,” [Online]. Available: http://www3.sympatico.ca/vpaquin/tutorial/

[2] G. Weber, L. Knipping, H. Alt, “An application of point pattern matching in astonautics” Aerospace and Astronautics of theTechnical
University of Berlin, J. Symbolic Computation (1994) 11

[3] S. Coe, “Saguaro Astronomy Club Database version 8.1,” [Online]. Available: http://www.saguaroastro.org/content/downloads.htm

http://static.aminer.org/pdf/PDF/000/994/725/an_application_of_point_pattern_matching_in_astronautics.pdf
http://static.aminer.org/pdf/PDF/000/994/725/an_application_of_point_pattern_matching_in_astronautics.pdf
http://www3.sympatico.ca/vpaquin/tutorial/
http://www.saguaroastro.org/content/downloads.htm

This

first run

took 152

second to

run. It

produced

a file

168

fields

wide,

which

simply

means

that one

star had

83

neighbors

.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Final Project %
% %
% "The Star Finder" %
% %
% An Algorithm to Identify %
% Stars From a Digital Image %
% %
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
clc
close all
tic;
% Read the csv file formatted file should have four data columns:
% Azimuth (hours), Azimuth (minutes), Altidude(degrees), Altitude

(minutes)
% All in standard J2000 Celestial Coordinate formatting
% The fifth column inidicated weather the declination is positive

(+1) or
% negative (-1)
data_in=csvread('StarDataIn.csv');

%convert input file into spherical coordinates
data_out = [360*data_in(:,1)/24+360*data_in(:,2)/(24*60),

(data_in(:,3)+data_in(:,4)/(60)).*data_in(:,5)];

% number of degrees that the point matched with have to be within
deg_rad = 3;

% Find out how many stars there are
num_stars=length(data_in);

for i=1:num_stars %change to num_stars later
 k=3;
 for j=1:num_stars
 if (i~=j)

dist_test=[data_out(i,1),data_out(i,2);data_out(j,1),data_out(j,2)]

;
 if (pdist(dist_test)<deg_rad)
 x_dist = dist_test(2,1)-dist_test(1,1);
 y_dist = dist_test(2,2)-dist_test(1,2);
 [theta,rho] = cart2pol(x_dist,y_dist);
 data_out(i,k) = 180*theta/pi;
 data_out(i,k+1) = rho;
 k = k+2;
 end
 end
 end
end
csvwrite('StarDataOut_test.csv',data_out);
time=toc

