
FussyFood: An Application to Navigate Food
Allergies & Dietary Restrictions

Sameep Bagadia
Department of Computer Science

Stanford University
Stanford, California 94305

sameepb@stanford.edu

Rohit Mundra
Department of Electrical Engineering

Stanford University
Stanford, California 94305

rohitm92@stanford.edu

Abstract—This report addresses the design of an Android
application with which the user can set dietary preferences,
capture ingredient label images, and get feedback on the ingre-
dients’ alignment with his/her dietary preferences. We discuss
the work flow of the application as well as the image processing
routines used in this application to improve OCR accuracy. We
also present a method to find the area of interest using F-score
maximization allowing the automatic detection of the ingredient
list bounding box. Finally, we evaluate how well this method
works at minimizing false positive and false negative ingredient
words.

I. INTRODUCTION

In this project, we design an Android application which
allows the user to make informed decisions about an edible
product using an image of its ingredient list. For instance,
it is estimated that 43–72 million people suffer from peanut
allergies. Approximately 11 million people in America fol-
low a vegetarian diet. Such instances demonstrate that large
populations in the world need to make informed decisions
regarding their diet due to a variety of restrictions. We make an
application in which a user can take an image of the ingredients
and receive a quick feedback informing them whether the
product aligns with their dietary needs. Such an application
is even more critical to users when they are unfamiliar with
the ingredients listed – for instance, a person with dietary
restrictions traveling to another country where the lingua franca
is not one he/she is familiar with might find themselves in dire
need for such an application.

II. BACKGROUND

Optical Character Recognition engines have been shown
to have a a very wide range of accuracy for a given image
depending on the preprocessing done[1]. The diversity in
results is rooted in the fact that the image given to an OCR
engine can be rotated, warped, noisy and blurry among other
distortions[2]. Thus, in our application it is important to be
able to overcome many commonly found distortions in an
automated manner before giving to the OCR engine.

In [1], the authors discuss many ways to preprocess im-
ages to improve OCR accuracy however many of these rely
on image-specific processing. Many such techniques would
require the user to themselves tune the parameters to counter
the distortions. For instance, the authors describe an approach
to recognize words in scanned textbooks that have noticeable

distortions towards the spine; here, they hope for the user to
be able to draw a spline along the text thereby demarcating
the distortion. This would otherwise be harder to estimate
efficiently and accurately.

In [2], the authors describe recognition of characters in
natural images that are otherwise handled poorly by traditional
OCR engines. The general approach is to extract features
from the images such as shape contexts, SIFT descriptors, and
Geometric Blur descriptors. They show such methods to work
well with Nearest Neighbor methods as well as Support Vector
Machines. We found that this approach would be more feasible
if our application sent the image to a central server where the
image processing was done rather than doing it on the mobile
system itself.

While these studies gave us insight on how to tackle our
problem, the problem definitions were different and thus, we
relied more on empirically determining reliable strategies.

III. APPLICATION USAGE

In this section, we discuss the various steps involved in our
application. The process flow is shown in Figure 1.

Fig. 1: Process Flow

The user begins with selecting his dietary restrictions. In
our application, clicking the user preferences button on the
top right corner of the main activity screen opens the food
preferences pane. This is shown in Figures 2a & 2b.

Once these selections are made, the user can click the
camera button and the application will take him to camera
screen where the user can click a photo of the ingredients.
Once an image has been captured, the application will prepro-
cess the image clicked before sending it to OCR engine. The
image preprocessing steps are described in detail in the next
section. From the text obtained from OCR, we select the list of
ingredients found and query the database to find out whether
each ingredient aligns with the user’s dietary restrictions. The
user is notified about each ingredient that is found to be non-
compliant.



(a) Start Up Screen (b) Preferences Pane

Fig. 2: Application display on an Android phone

IV. IMAGE PREPROCESSING

A major goal of this project is to improve the ingredient
recognition accuracy by supplying the OCR engine with a
cleaner image than the raw captured image. In this section
we discuss the various preprocessing steps applied to the raw
image before sending it to the OCR engine. We consider the
image shown in Figure 3 as a running example to show the
intermediate results after each step is applied on the image.

Fig. 3: Original image

A. Locally Adaptive Thresholding

We first convert the original RGB image to grayscale. This
allows us to do thresholding efficiently based on a single
value per pixel. In order to avoid incorrect thresholding due to

lighting variations across a captured image, we apply locally
adaptive thresholding where we divide the image into small
windowed patches and apply Otsu’s method in the blocks
where the variance is found to be high (i.e. regions where
text is likely to be present). Regions where variance is low
are considered to be background. We found empirically that
the window width and height of 96 pixels is appropriate
for a 2.4 megapixel image (2048 × 1152). Of course, if the
image dimensions are larger, we can linearly scale up the
window width. Using this technique, we get the image as
shown in Figure 4. Here we see that the text is successfully
disambiguated from the background.

Fig. 4: Locally Adaptive Thresholding

B. Probabilistic Hough Transform for Auto-rotation

We found out that OCR performs very poorly if the image
given to it is rotated. Therefore we auto-rotate the image to
correct its rotation. We apply Probabilistic Hough transform
to detect line segments in the image. This variant turns
out to be computationally cheaper than the classical Hough
transform and can be computed on a standard phone. For the
Hough transform, we use distance and angle resolutions of 1
pixel and 1 degree respectively. Line segments shorter than
one third of the image width are rejected since we expect that
the image will be taken at a reasonable distance so that each
line will take more than one third of the total width of the
image. A maximum of 20 pixels of gap is allowed between
points to be detected as part of the same line segment. After
applying these parameters, only those lines are returned that
have more than 100 votes. From these line segments, we filter
out those lines which have an absolute angle of more than
45 degrees. Again, this assumes that the image will not be
captured at extreme angles considering how most consumers
naturally tend to keep images horizontally-axis aligned with
only small rotation skews. We then take the median of the
angles of line segments thus obtained as the skew angle of the
image. Using the median allows to avoid extreme rotations
that could potentially lead to errors.

Once we have the rotation skew angle, we rotate the
image by that angle by applying the corresponding affine



transformation on the original image matrix and thus correct
the image skew. The auto-rotated image is shown in Figure 5.

Fig. 5: Auto-rotation

C. Background Removal

As we see in the Figure 5, there is a lot of noise in the
image. Particularly, there are regions corresponding to edges of
the product and other markings that do not correspond to any
text. In order to remove this type of noise, we first apply Canny
edge detection method to detect edges in the image. This leads
to high frequency of edges detected in regions where there is
text. The image obtained is shown in Figure 6. We see that
text edges, product edges, and all other markings now have a
pixel wide Canny edge.

Fig. 6: Canny edge detection

We now need a way to keep only Canny edges that are
close to other Canny edges. Thus, we apply an averaging
box filter so that regions with many Canny edges will have
a high average while those with low number of edges will get
averaged with black pixels in the neighborhood. The rationale
is that text regions will have a lot of white pixels and Canny

edges nearby whereas non-text region will lack this property.
We then threshold the resulting image after a global histogram
equalization to remove the noisy regions. The resulting image
is shown in Figure 7.

Fig. 7: Noisy Region Removal

D. Bounding Box Detection

At this point, we want to use image constructed so far to
automatically identify the region that contains the ingredient
list. Not all the text on the image is relevant to us since much of
it contains other nutritional information and production details.
We are only interested in text containing ingredients. So our
aim is to detect a bounding box which contains the relevant
textual region. The reason for finding this bounding box is
two-fold:

1) The larger the image sent to the OCR engine, the
slower the detection process with be; considering how
OCR is a computationally expensive task, we wish to
minimize the the input to solely textual information.

2) In many products we found text near the ingredients
list signifying the absence of certain ingredients (such
as ”does not contain eggs” or ”produced in a gluten
free facility”). See Figure 8 as an example. If we
perform a unigram database look up for words in
such phrases, the database will incorrectly indicate
presence of eggs or gluten.

Thus, it is important for our application to identify the
ingredients list efficiently and accurately. An alternative ap-
proach would be to ignore bounding box identification and
parse/process the natural language. As a design choice, we
chose to handle this using image processing.

In order to find the bounding box, we realized that we
need to keep dilating the image in Figure 7 till we find a
central connected component that contains as much text in as
little area as possible. The idea behind this is that words in an
ingredient list are packed close together within a paragraphic
form. Thus, we design an optimization problem around the
image in Figure 7 where we want to maximize the fraction of
white pixels in the central component while minimizing the



Fig. 8: Label indicates lack of wheat and gluten

area consumed by the rectangle containing that component. A
quick inspection will make us realize that these are contentious
goals. For instance, maximizing the number of white pixels in
the central component would suggest that we should dilate
the image so much that the entire image’s white pixels are
contained within it. This would result in a very large bounding
box. But we also want to minimize this quantity. Conversely,
the smallest bounding box would have no area and thus no
white pixels in it. Thus, we create an Fβ score optimization
problem of the form:

maximize (1 + β2)
precision · recall

β2 precision+ recall

Where precision is defined as the fraction of the image region
not contained in the bounding box and recall is defined as the
fraction of white pixels contained in the bounding box. β is the
parameter which we can vary to get Pareto-optimal solutions to
this optimization problem – for instance, a β value of 1 would
lead to equal importance being placed on precision and recall
while a lower value would emphasize precision over recall.
For our application, we determined a value of β = 0.5 to be
most accurate at finding the correct bounding box.

Fig. 9: F-score maximization

Thus, we iteratively dilate the image till we find the
maximal F0.5 score and then find the smallest rectangle

encapsulating this connected component. We see in Figure 9
that the ingredient region is connected into a single component
when our optimization problem is solved. Lastly, we find
the minimum rectangle that contains this component and this
problem can be solved trivially by observing the minimum
and maximum x and y coordinates of the white pixels of the
central component.

Fig. 10: Bounding Box

Overlaying this bounding box on the original image, the
user can see the identified region of ingredients (Figure 10).

V. OPTICAL CHARACTER RECOGNITION & DATABASE
LOOKUP

Using the bounds we identified, we crop the locally adap-
tive thresholded image to get the final image to be fed to the
Tesseract OCR engine [3] (Figure 11). Tesseract was found
to perform very well in our application and its open-source
library was available for Android. Given such an input image,
the engine returns to us a text string that we post-process.

Fig. 11: Cropping

We split the string on all non-alphanumeric characters to
get all the words in the ingredient list. We then query each
word against a database and compare the user’s preferences
against the retrieved properties to check for alignment.

VI. ERROR ANALYSIS & RESULTS

In order to evaluate how well our system works in correctly
identifying ingredient words and avoiding non-ingredient
words, we designed three intuitive evaluation metrics:

1) Metric 1: Fraction of words detected to be as ingre-
dients that were in fact ingredients.



TABLE I: Error Analysis

Metric Scenario 1 Scenario 2 Scenario 3
Metric 1 0 0.760 0.742
Metric 2 1 0.240 0.258
Metric 3 ∞ 2.079 0.0

2) Metric 2: Fraction of words not detected to be as
ingredients that were in fact ingredients.

3) Metric 3: Fraction of words detected to be as ingre-
dients that were not ingredients.

The first two metrics assess and ensure that listed ingredients
on the label are not missed since such cases could lead to
false safety alerts to the user potentially leading to health
and emotional damage. The third metric ensures that non-
ingredient words are not detected; thus a low value would
minimize false positives that would result from labels such as
that shown in Figure 8.

We measure these metrics for three scenarios:

1) Scenario 1: Grayscale captured images fed to the
OCR engine

2) Scenario 2: Auto-rotated images fed to the OCR
engine

3) Scenario 3: Auto-rotated and auto-cropped images
fed to the OCR engine

These scenarios illustrate how our system changes the
values of different metrics across 10 sample images we tested
on. Table I displays the results.

We see that giving a raw image to the OCR engine
is insufficient to get desirable results. After auto-rotation,
the OCR engine performs substantially better but without
the appropriate cropping the system detects multiple non-
ingredient words to be ingredients. The bounding box approach
performs nearly as well at capturing the true ingredients but it
outperforms at avoiding non-ingredient words.

VII. FUTURE WORK

Using the described system and image processing tech-
niques, we were able to successfully design an assistive
application for persons with dietary restrictions and/or food
allergies. We found that many ingredient detection errors were
the result of one or two characters being incorrectly recognized
by the OCR engine. Thus, future work would be the integration
of a spell-checker which can intelligently recognize words
that are very close to ingredient words and handle them
accordingly.

Furthermore, the application can be improved by also
sharing a health report of the food item by analyzing the
ingredients. This will increase the usability of the product and
capture markets that care about general health but do not have
any dietary restrictions.

We also hope to add more image processing routines to
handle more types of warps that are commonly found, such
as those on cylindrical objects. Perspective warp can also
be integrated in the system. These will increase the general
robustness of the system. [1]. [4]. [2].

REFERENCES

[1] W. Bieniecki, S. Grabowski, and W. Rozenberg, “Image preprocessing
for improving ocr accuracy,” in Perspective Technologies and Methods in
MEMS Design, 2007. MEMSTECH 2007. International Conference on,
pp. 75–80, IEEE, 2007.

[2] T. E. de Campos, B. R. Babu, and M. Varma, “Character recognition
in natural images,” in Proceedings of the International Conference on
Computer Vision Theory and Applications, Lisbon, Portugal, February
2009.

[3] R. Smith, “An overview of the tesseract ocr engine,” in Proceedings of the
Ninth International Conference on Document Analysis and Recognition
- Volume 02, ICDAR ’07, (Washington, DC, USA), pp. 629–633, IEEE
Computer Society, 2007.

[4] R. Casey and E. Lecolinet, “A survey of methods and strategies in
character segmentation,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 18, pp. 690–706, Jul 1996.


