FriendBlend

Kevin Chen':3, David Zeng1’3, Jeff Han??

Abstract—FriendBlend is a mobile application that merges
two portraits of different people to create a single, multi-person
photo. To do this, Person A takes a photo of Person B, and
Person B takes a photo of Person A with the same background.
Given these two input images, our goal is to create a third image
with both Person A and Person B in the photo together. We
first color correct the photos and then register the images by
performing keypoint matching to estimate the homography. We
then blend the images either by alpha blending or by GrabCut
segmentation, depending upon the relative locations of the
human subjects in the two images. Limitations in the underlying
techniques can affect the robustness of the application, but in
the majority of cases FriendBlend works quite well.

I. INTRODUCTION

A self-portrait photograph (selfie”) is convenient since
everyone can be included in the photo. However, the com-
position of the photo is wanting. For a properly composed
photo, the photographer usually cannot be included. Our
project intends to address both of these issues.

Our project requires two pictures. The first picture contains
everyone except for the photographer and the second picture
is the photographer alone. Our goal is to seamlessly add
the photographer to the original image to achieve a properly
composed image with everyone.

The core image processing relies primarily on registration
and segmentation techniques. Our project works well for
many cases but also is also limited by pathologies that it
inherits from its underlying methods. Furthermore, our target
is mobile devices and this also constrains the available tech-
niques. We address some issues with our own heuristics but
it is still apparent that for more robust operation, additional
research or computing power is required.

II. ALGORITHM

A. Color Correction

It is crucial to make sure that the lighting from the two
input images are approximately the same before the blending
process. This ensures that there are no obvious artifacts in the
resulting output image due to dramatic lighting differences
between the two input photos. To address this issue, we
perform contrast limited histogram equalization in the Lab
color space on the lightness channel to preserve hue [1].

LEnrolled in EE 368/CS 232 Digital Image Processing

2Enrolled in CS 231M Mobile Computer Vision

3Department of Electrical Engineering, Stanford University, Stanford,
California

B. Face and Body Detection

Locating the subjects in the pictures is important for deter-
mining which image merging process to use. To find where
the humans are located in the images, we use face detection
by Haar feature-based cascade classifiers [2], [3]. Using
the location and size of the face, we can then determine a
bounding box for the body of the human. We use a cascade
of boosted classifiers based on Haar-like features to extract
a bounding box for the face of each person. The bounding
box for the body is determined from the following formulas:

body __ _ face

Tiept = Tlepy — W (L
ooty =l + 2w 2)
ton? =yl —h 3)
Yoory = height(image))

In the equations above, w and h are the width and height
of the face bounding box, and height(image) is the height
of the image. This size for the body bounding box was
determined empirically and works well for most cases.

C. Homography Estimation

We compute a homography to warp one of the images so
that the perspectives from the two photos are the same prior
to merging. Although the scene is not planar, the background
is assumed to be far away from the camera center so that a
homography will be sufficient for our purposes. In practice,
this turns out to work very well.

1) Keypoint Detection: FriendBlend uses Oriented FAST
and Rotated BRIEF (ORB) keypoint detection [4] because
of the balance in efficiency, performance, and monetary cost.
ORB keypoint detection is similar to SURF but also includes
a modification to account for rotation invariance, and the
keypoint descriptors are essentially BRIEF descriptors for
rotated patches around the keypoints.

2) Keypoint Matching: Keypoints in the two images are
matched by Hamming distance, which is recommended for
ORB descriptors [4]. A pair of keypoints, one from each
image, are said to be matched if the keypoints are within
a certain threshold Hamming distance from each other. In
our implementation, we set the threshold to be 10 times the
distance between the closest keypoint match.

Furthermore, we also prune our matches based off of
keypoint locations. Since each person is in each image once,
any keypoints on the person should be rejected. Keypoints
from the face or body in one image should not be found in
the other image. Therefore, we prune a keypoint match if any
of the keypoints are within the bounding box of a person.

(a) Image 1
o

Var

(f) Homography

(b) Image 2

(g) Alpha blending

(e) Keypoint matches

(h) Grabcut result

Fig. 1: FriendBlend Processing Flow

3) Computing the Homography: Once we have found a
good set of keypoint matches, we use RANSAC [5] to find
the homography that best warps the images into the same
perspective.

D. Image Blending

FriendBlend uses two techniques to merge the images
depending on whether the subjects in the output photo should
be close together or far apart. If the subjects are far apart,
we run an alpha blending technique. If the subjects are
close together, then we first find a rough segmentation of
the human and then paste the cropped subject into the other
image.

1) Subjects Far Apart: Since the subjects are far apart,
we can just blend the area between the subjects together and
then crop the merged image. To do this, we perform alpha
blending in each color channel separately. The blending
begins at the rightmost edge of the bounding box for the left
subject (call this edge at x = colStart), and the blending
ends at the leftmost edge of the bounding box for the right
subject (call this edge at x = col End).

1
tepSize = 5
steporze colEnd — colStart ©)
z‘T““lt(x, y) = (1 — stepCount * stepSize) * ileft(:v, Y)
+ (stepCount * stepSize) * i"9" (2,) (6)

Here, stepCount is an iterative variable defined by
stepCount = x — colStart when x is between colStart
and colEnd (inclusive). Within a single column of the
image, every pixel element is blended the same amount. This
blended image is the final output image.

2) Subjects Close Together: If the subjects are close
together, then one person needs to be segmented on top of
the other person so that it looks like one person is standing
in front of the other. To determine which subject is in front,
we compare the sizes of the face bounding boxes of each
person and set the person corresponding to the larger face to
be in the foreground.

Once we have determined which subject is in front, we
need to crop the person in the foreground. We can obtain a

fairly reasonable crop using GrabCut [6]. We set the body
bounding box as input to GrabCut along with predictions of
probable foreground pixels and definite foreground pixels.
The pixels within the face bounding box are set to definite
foreground pixels and the area below the head is set to
probable foreground pixels since it likely contains the body.

Using the results of GrabCut, we extract a mask to crop
out the person in the image. Next, we perform erosion on
the cropped person using a 3x3 ellipse-shaped structuring
element to get rid of any artifacts along the edge of the crop.
Finally, we overlay these pixels on top of the background
image to produce the final result.

III. METHOD

We implemented FriendBlend in both Python and C++.
Both implementations rely on OpenCV [7], and face detec-
tion is based off of a pre-trained Haar feature-based cascade
classifier from OpenCV. We also made the assumption that
there is exactly one face in each input image. If multiple
faces are detected, then FriendBlend will select the largest
face.

In our implementation, we discard keypoint matches based
off the Hamming distance between two descriptors and
based off the keypoint location. To discard a keypoint match
based off distance, we first calculate the smallest distance
between any keypoint descriptor in the first image and any
keypoint descriptor in the second image, which we call
distsmallest- Any keypoint match that has a distance greater
than dist.,, = 10 % distsmaiiest 1S removed from the set of
keypoint matches.

Furthermore, after we perform alpha blending for two far
subjects, we make sure to crop the final image. The warping
from the homography can cause the bounds of the image
to expand. For example, a warped image can have a larger
height than the original image. Therefore, we crop the image
so there are no undesired artifacts in the final image.

When running GrabCut, we calculate a different-sized
bounding box for the body. Rather than using equations (1)
through (4), we use the following:

body __

xleft - ‘Tlfeafcte 2w (7)
g = T+ 3w ®)
bod
Yrop. =0 ©)
body

ybottom = helght(zmage) (10)

Lastly, in order to reduce the runtime and save storage
space (which is especially important for the mobile comput-
ing), we make sure to downsample the images so that the
longest edge is at most 1000 pixels long.

Using a Java wrapper for our native C++ OpenCV code,
we were able to run FriendBlend on Android which has a
reasonable runtime even on a mobile device. We tested the
Android application on an NVIDIA Tegra Tablet and an HTC
One.

IV. RESULTS AND DISCUSSION

We tested FriendBlend on an NVIDIA Tegra Tablet and
an HTC One in many different environments, as shown in
Figure 2. In Figure 2(a-c), the two subjects are on opposite
sides of the image so alpha blending is utilized for the
combining the images. We see that the processing works well
for these input images and the output image convincingly
appears that it is a single photo of two people. In figure
2(d-e), the two subjects overlap in the image so GrabCut
segmentation is used. The results are again convincing and
the seams have been blended well. Figure 2(f-h) also has
overlapping subjects. There is a cropping issue present but
the image seems reasonable otherwise.

From the results, we can see that when all of the methods
work as intended, the image looks reasonably convincing that
both people were originally in the image. We identified two
significant pathologies that can cause our algorithm to fail.

The first pathology occurs when the Viola-Jones face
detector fails to recognize any faces within either image.
Our registration and segmentation techniques are based upon
knowing the location of the subjects face and therefore body
to properly identify keypoints, calculate the homography, and
segment the subject. If we cannot identify a face in each
image, then our heuristics and assumptions are not likely
to hold, leading to the failure of the process. More robust
face detection algorithms exist, such as [8], but they require
significantly more computational capacity than the Viola-
Jones detector.

Figure 2(j-1) has two subjects far away so alpha blending
is used. The result is still reasonable but does not look
as convincing. The homography is not quite right and the
subject on the left looks like he is leaning forward. We can
see that most of the keypoints are likely to come from the
buildings in the background. However, the heads of the two
subjects are occluding the buildings and thus we will discard
those keypoints, significantly reducing the number of usable
keypoints. With fewer quality keypoint matches, it makes
sense that the homography would not perform as well.

The other significant pathology occurs when we cannot
maintain enough keypoints after pruning. It is not unusual
for a person to occupy one-third of an image. When we
consider two images, potentially two-thirds of the image
must be ignored for keypoints. This leaves only a third of the
image for keypoints which are then pruned. Sometimes no
keypoints survive RANSAC or the keypoints that do survive
are poor matches which lead to a poor homography.

Our segmentation method is moderately fast but does
not produce an exact segmentation of the person. There
exist better segmentation methods such as [9] and [10].
However, these are even more computationally expensive
than GrabCut.

Figure 2(m-0) has two subjects close together so GrabCut
is used. In the result, the artifact of the right boundary of the
display case is most noticeable. This is from the failure of
the assumption that the background can be treated as planar
in the homography. If the segmentation were more precise

however, only segmenting the subject, then the failure of the
homography would not have been as apparent.

Mobile devices are known for their computational limits
and these constraints lead to challenges in developing a
robust application. A feasible solution is to offload the
computation to a dedicated server and transfer only the initial
and final images. In the context of a mobile application, it
remains to be seen how responsive this computational flow
would be for user experience.

A future extension of this project would be to handle more
than two images and continuously composite the new image
to the existing images to create images of arbitrary size and
shape. Another extension would also be to generalize this
algorithm for multiple faces rather than just two.

ACKNOWLEDGMENT

We would like to acknowledge Professor Bernd Girod,
Professor Gordon Wetzstein, and Professor Silvio Savarese
for their instruction.

WORK DIVISION

e Kevin Chen: Developed some image algorithms in
Python. Python and C++ debugging. Data collection.
Worked on the poster and written report for EE 368.

o David Zeng: Developed some image algorithms in
Python. C++ implementation. Data collection. Worked
on the poster and written report for EE 368.

« Jeff Han: Developed some image algorithms in Python.
Developed Java wrapper and Android interface. Data
collection. Worked on the report for CS231M.

REFERENCES

[1] S. Naik. Hue-preserving color image enhancement without gamut
problem, IEEE Trans. on Image Process., vol. 12, no. 12, pp. 1591-
1598, 2003.

[2] P. Viola. Rapid Object Detection using a Boosted Cascade of Simple
Features. IEEE CVPR, 2001.

[3] R. Lienhart. An Extended Set of Haar-like Features for Rapid Object
Detection. IEEE ICIP 2002, Vol. 1, pp. 900-903, Sep. 2002.

[4] E. Rublee. ORB: An efficient alternative to SIFT or SURF. ICCV
2011: 2564-2571.

[5] M. A. Fischler and R. C. Bolles, Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography, Commun. ACM, vol. 24, no. 6, pp. 381395,
1981.

[6] C. Rother, V. Kolmogorov, and A. Blake, GrabCutlnteractive Fore-
ground Extraction Using Iterated Graph Cuts, ACM Trans. Graphics,
vol. 23, no. 3, pp. 309-314, 2004

[71 G. Bradski, OpenCV, Dr. Dobb’s J. of Software Tools, 2000

[8] S. Farfade, M. Saberian and L. Li, "Multi-view Face Detection Using
Deep Convolutional Neural Networks’, ICMR 2015, 2015.

[9] P. Duygulu, *Object recognition as machine translation: Learning a
lexicon for a fixed image vocabulary’, in 7th European Conference on
Computer Vision, Copenhagen, 2015.

[10] C. Juang, ’Computer Vision-Based Human Body Segmentation and
Posture Estimation’, in BTAS, Crystal City, 2007.

(a) Image 1

(b) Image 2

(k) Image 2

(m) Image 1 (n) Image 2 (o) Result

Fig. 2: FriendBlend Results

