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Abstract—In this project we built a mobile assistant app
for visually impaired people. The app runs completely of-
fline on the mobile device, it includes a deep convolutional
neuron network for gender detection, and have a way to
represent picture content with sound.
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I. INTRODUCTION

ITH recent development of mobile chips, we

now see more and more powerful smart phone in
people’s hand, processors inside these phones has more
computing power than normal desktop PC in 2000.
This means a lot can be done on mobile devices that
could make people’s life easier. Especially, nowadays
mainstream mobile operating systems including iOS
and Android had carefully thought after accessibility
functions build in. With these functions, visually
impaired people can use a smart phone almost as
conveniently as fair sighted people. However, there has
yet to be a good app to help them “see” the world,
so the main motivation behind this project is to help
visually impaired people to ”see” through the lens of
their smart phone.

The first aspect of the project is to have a mechanism
that run on the phone and detecting faces continuously,
to make the most use of it in any environment, ideally
this function should run completely offline and do not
require any cloud service. In that way, the user can
use it when there is no network connection, and it also
helps with minimising delays. In the short period of
this project we wanted to implement face detecting
and gender classification, and build that with future
functions in mind, so that the app can be relatively
easily expended to be able to recognise other things in
the future, for example identify people.

Instead of using the traditional method of Egen faces
and Fisher faces, we want to use some new method that
can work when the people are not perfectly facing the
camera, because that is the situation we have in most

of the use cases. We tried to explore the possibility
of using a deep learning method called Convolutional
Neuron Network(CNN)[7] for our purpose. Further
more, we tried not to use a CNN that is specifically
trained for our task, instead, we want to use a CNN
trained for general purpose and extract features from
it’s result to achieve our goal. With this approach,
the end product will be very flexible to be adapted
to perform other tasks instead of only doing gender
classification. With that in mind, we chose to use
the “ImageNet 2012 mobile” model trained by liu
liu of libccv.org[S]. Another reason that we chose
this specific model is a traditional Imagnet CNN[7]
would have to big a memory footprint(several hundred
MegaByte) to be able to run on a mobile device, the
model we chose had gone through an extensive size
reduction process to reduce the memory foot print to
about 100 MegaByte[5]. Also with this model that can
identify 1000 object categories, we have free bonus
functionality of detecting objects, for example 200
breed of dogs, and lots of everyday objects.

II. IMPLEMENTATION
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Figure 1. Workflow overview.

As illustrated in about figure, an image will go
through these steps in order for the gender of person
to be classified:

1. Camera will run in a loop and taking picture at rate
of about 2Hz.




2. Picture will go through face detection, and any face
bound will be drawn on screen as a preview.

3. User then decide whether they want to only detect
the biggest face in the frame, or, the whole picture will
be send to CNN.

4. If user chose to only detect biggest face, then the
head and shoulder area of the biggest face bound will
be cropped out, and the new picture will be send to
CNN for classification.

5.CCN will output a 1000 dimension vector of
confidences of detected features.

6.Feature vector will be feed into the logistic regression
prediction function, then give probability/score for each
of the classes.

A. Face detection

There are various techniques that can be used for face
detection, for example SVM[13], template matching,
etc. Among these algorithms, Viola Johns[1] algorithm
was the most popular algorithm that is widely used
in industry, because of it’s good balance between per-
formance and computational complexity(or simplicity).
The Viola Johns algorithm in CIllmage class that’s pro-
vided by iOS SDK can find the face bound, eye/mouth
location and face angle. It’s working reasonably well
for our purpose, so we decided to use it as the face
detection mechanism in this project.

B. Gender classification

Facial gender detection was an very active research
area, some new approach of image processing related
to human face will target this task as a first step, for
example we have Egen/Fisher faces approaches that
were taught in the course, also those using PCA[12],
Logistic Regression[14], etc. But most of these technics
works well as long as face is detected, and not facing
too sideways to the camera. What we wanted to do in
this project, is to explore a possible method that can
work relatively well no matter which angle the target is
facing.(we can even have 70% without seeing the face
at all) As stated above, we chose to use a CNN as the
feature extraction part of the classification algorithm.
The CNN was trained to detect objects and high level
semantics instead of detecting gender directly, the idea
is if we can identify people’s high level appearance,
for example wearing a suit or a dress, hair style etc,
we can infer people’s gender appearance from those
features. By using a CNN that is trained to detect
general objects, we can later extend the framework
to do other classifications that can be done with high
level semantic understanding. We then used Logistic
Regression as the classification method on feature
vectors from the CNN. As same any other machine
learning method, the Logistic Regression need to be

trained to give a meaningful result.
Main work of classification part can be divided into 3
parts: Training data acquisition, training and testing.

1) Training data: To train a working logistic
regression model, we need a reasonable amount a
training data.

We found one good source of labeled training image
is ImageNet, but after downloaded all images labeled
“man” and “woman” from ImageNet, we found that
the diversity of those images are not very good, for
example almost 100 of pictures labeled “men” seems
to come from the same seminar-like event, and featured
the same group of people. To curate the data, we
then go ahead deleted some of those pictures and also
corrected about 5% of the pictures that was labeled
incorrectly. To make our training data set more diverse,
we also downloaded several hundreds of images from
a online stock photo website, and manually corrected
some of the labelling errors in there too.

Considering the CNN model we chose to use do not
have localisation build in. To get better accuracy, we
chose to train the function with only with portion of
the picture that contains most of the features that is
related to people. We run face detection on each image,
found face bounds and face angle for each faces, then
rotate the picture so that the face is in up-right angle,
then cropped the area of head and shoulder as our
training data.

Figure 2. Face detection.



Figure 3. rotated and cropped.

Then we manually checked these images, and used
these images as the final training image set, we
have in total 2070 pictures (1111 male, 959 female):

Flgure 4. Original picture samples(male).
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Figure 5. Croped training data set samples(male).

III. TRAINING

To train the logistic regression, we need to get the
feature vector from CNN, and since the version of
Model we want to use is specifically tailored to run
on mobile, we don’t want to invest time to make it
run on PC and verify it will gave the same results
as it’s running on mobile. Instead, we chose to feed
all the training data on mobile and extract vectors
from there. What we got from CNN for each of the
training image is a 1000 dimensional vector. Noting
the confidence value of each of the detected high level
features. Following is a sample of the vectors that we
got from training images.
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Figure 6. Sample training vector.

We studied these training vectors and found the
weight of vectors are very long tail, so we decided
to preserve all of them instead of trimming them
with top weights and store them as sparse matrix.



140 | —I Feture vectt;r histogram [
2o}
00|
80l
af
0t
0 ) h "
10° 10°* 10° 10° 10

Figure 7. Histogram of training vector weights.

Then we divided all training set into 80% training
and 20% validation set. We used the 80% training
set to train the Logistic Regression model on a
PC using science kit machine learning libraries[3],
validation with the 20% set give us 80% of prediction
accuracy.(78 errors out of 390 validation images.)

We then extracted the coeficiency vector and “intercept”
scalar value from the trained model to use as the forward
prediction path we will later use on mobile.

After that the prediction process is a dot product of
image feature vector and coeficiency vector then adding
“intercept”.

score = (Vieat)- * (Veeof) + Intercept

If we want the probability of each class, we need to
use logistic function on the score to get it, but since
our case here only have only 2 classes, we can simply
judge which class it belongs by looking at the sign of
the score.

We tested our forward prediction algorithm with the
whole training set to validate the equation, and we got
4.27% and 5.15% error rate for male and female classes,
which means it’s working reasonability well.

IV. TESTING

We then implemented the logistic regression
prediction function on mobile iOS using Objective-C,
then validated the whole pipeline again with training
image set. We got 5-8% error rate, which means the
whole prediction pipeline is working as expected:
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Figure 8. Validating with training data set.

To test the result of the prediction, we get a totally
new dataset from a online search engine, then manually
labeled them and feed them into the testing function we
build in the app. Result shows average of above 70%
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Figure 10. Test result with new test image set, run 2.
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Figure 11. Test result with new test image set, run 3.
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Figure 12. Test result with new test image set, run 4.

V. IMAGE REPRESENTATION WITH SOUND

Another component of the project is to figure out a
way to represent a image with sound in conjunction of
detection function. Here is a overview of how it works:
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Figure 13.Sound representation work flow overview.
The sound representation works as in above flow:
1.When the view get a image from the result of the



CNN, it will first run several image filtering on it, then
present the filtered image in the present view.

2.When user touch the screen, the app will sample the
touch point and get the RGB value of the pixel at that
location.

3. RGB value of the touch point were then converted
to HSV color space.

4. Then we use a combination of a sin wave and white
noise to represent the HSV values. The frequency of
sin wave will represent the Hue, relative volume of the
sin to the white noise will be the saturation, and finally
overall volume level will represent value.

Result of this algorithm is, when user touch a black
patch, there will be no sound, a white patch will induce
full volume white noise. If there is any color, there will
be sin component and it’s frequency represent color
ranging from 200Hz for red, to 6200Hz for blue. The
volume of the sin wave representing the color saturation.
By scrubbing finger across screen back and forth, user
can get a rough idea of the shape of the object in frame.

To improve the user experience, some filters was
subjectively chosen to enhance the image before
presented to user.

”Posterize” will saturate color and erode color blocks,
which makes the sound representation contains mostly
only the sin wave representing the color, which makes
it much easier to grasp the color of the scene, use case
of this filter could be try judge whether a pair of socks
are the same color.

Gray scale filter will make the picture lose color
information but with subtle variations between volume
of the white noise it better suited to identify shape of
an object.

VI. CONCLUSION

Here are some screenshot of the outcome of this
project we got running on the iPhone, we did not put
too much work into UI design yet since it’s still a
technical Proof of Concept at this stage, but we are
planning to move forward and build a actual product
based on this study and release it into App Store.
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Figure 14. Screenshot of main tab.

Main tab includes the main functionality of this app,
the small window on top right corner is the real time
preview of camera feed, it’s taking pictures in a loop,
then we run face detection on the captured image
and display it in the big view in the middle. At the
same time based on the use chose of the green switch
button, either the whole image or the detected head and
shoulder area will be feed into CNN for classification.
The classification will run 1-2 seconds on a iPhone 6,
when it gets a result, the app will display the actual
image that had just went though on the smaller view
that’s below the live camera feed view. It will also
display the gender and score with the icon and score
label on the right. The text view on the bottom will
display object labels that come out of the CNN object
detection. Will also be helpful when users are interested
in detecting object instead of people. Testing shows the
app has above 70% percent of accuracy, considering
the CCN underneath has top-1 missing rate at 36.83%
and top-5 missing rate at 18.20% after quantisation, by
consolidating high dimensional knowledge, our gender
classification actually managed to beat the CNN’s top-1
accuracy and only slightly behind it’s top-5 accuracy,
which is a good result for this experimental stage.



Figure 15. Screenshot of “Listen” tab.

Listen tab will apply filters to the latest image that
when through CNN, and be able to synthesis sounds to
represent the RGB value of touch point.
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Figure 16. Screenshot of testing tab.

This tab is build only to test the classification function,
it has various testing and validating functions to read
and test images from pre-defined directories then log
and present test results.

We used these function extensively during the experi-
menting of training phase, testing different coeficiency
vectors that we got from different training settings.

VII. FUTURE WORK

When we compare the testing result with the valida-
tion performance, we can see a clear sign of over fitting
the model with the training dataset. Also, by examining
the training dataset, we see there seems to be a lack
of diversity of scenes, locations, population, etc. in the
ImageNet dataset, which was majority of the training
data. In the future we could add some more image
source to the training set for example adding images
from social media sites like facebook or tumblr to enrich
the training data set. Also training data amplification
technics like blur, scale and crop had been mentioned in
various literatures[2][6] to be able to help lower chance
of over fitting, and worth a try in this project too.
Also, when face can be detected with good orientation,
we could implement a traditional face processing algo-
rithm to work together with the method in this project,
so the combined effort would have much better overall
performance.



APPENDIX A
CHALLENGES, WORK AND SOURCE CODE
INTRODUCTION

In this project, we build a gender classifier using a
CNN that work on mobile phone, making the CNN
running on mobile and extract feature vectors from it
took a lot of work, considering traditional ImageNet
CNN will have near Gigabyte of memory footprint and
impossible to run locally on mobile devices, it was
only made possible on late 2014 by the open source
project[9] that used.

Due to the computational intensive nature of CNN for-
ward path, it was very tricky to make it run well together
with the camera capturing loop, without locking up
UI occasionally. We got it CNN running very well in
separate thread in the testing suit without locking up
UI at any moment, since the tests will run for hours
sometime, and without getting that right, we would not
get any meaningful test result.

Another challenge is to gather training image, process-
ing them with face detection and crop out areas that we
need to train the model. As with any machine learning
project, large amount of high quality training data is
always the key of high quality results. We wrote a
download script to download images from imageNet
link file, also a scrubber to download images from a
stock photo website. Then we wrote a cropping function
on mobile to detect face and rotate and crop “head
and shoulder” area that we needed. We also wrote the
function to crop “’face only” and gathered a huge amount
of training data for face only images, and trained a
model to work with face only, it has ;95% accuracy
with training data, but lack of meaningful performance
on test data(a sign of over fitting model and shortage of
training data), so I decided to leave that outside of the
end report.

A big part of the work goes to build the testing
framework on mobile, as mentioned in conclusion part,
we build the testing module to randomly chose testing
image from pre-defined directory in app’s “documents”
folder, then log the testing result, and display testing
progress on the fly. This testing frame work is essential
for choosing the right training parameters to come up
with a useful model.

When building the sound representation function, a
lot of work goes into experimenting the best way or
representing RGB value to arrive to the final design.
Then we spend a lot of time trying out different image
filters to enhance the image, before sending them to the
touch/scrub interface.

In the uploaded source code package you will find
following key components of the project:
ee368_prj_imagenet.py

This is the script that I used to train the logistic re-
gression model that I extracted from the mobile device,
there are also many data analysing functions inside of

this file.

data_presenter.py

This is the collection of functions that I used to analysis
various data during the process, also to generate some
of the illustrative graphs.

imagenet_downloader.py

This is a multi-thread downloader to download Ima-
geNet images from the individual links in a text file.
testLibccv.zip

This is the XCode project for the mobile client, inside
of it you can find most of the work represented in these
files:

”FirstViewController.m”

This is the main view of the app, includes camera cap-
ture loop, face detection and image rotation/crop, draw-
ing face bound and eye location on preview window,
also the function calls to CNN and gender classifier.
”Second ViewController.m”

This is the testing framework. It includes the cropping
function that I used, image resizing, rotation. Also
a automated testing framework for classifier, which
includes live result update, and logging functionality.
”ThirdViewController.m”

This is the view of ”sound representation”, it will take
the output from main view(when there is a picture
went through classifier), and represent it will sound
representing RGB values of touch point.
”KLHierarchicalClassifierm and KLClassification-
Hierarchy.m”

These originated from the libccv project[9], I have mod-
ified them intensively to extract 1000 feature vectors
from CNN, load gender detection coeficiency vector
from file, and perform logistic regression prediction then
give a classification score.

”AudioController.m and BleepMachine.m”

These are the code that converts RGB value into HSV
value then generate sound to represent it. Some of the
sin wave and white noise generating functions were
adapted from various open source code base that I lost
track of the origin.

Note:

The project will only build to run on hardware devices
with valid provisioning profile, it will not run in XCode
iPhone simulators due to it’s dependancy on NEON
vector acceleration.
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