Contour Extraction and Visulization from
Topographic Maps

Christopher Hansen
Department of Electrical Engineering
Stanford University
Stanford, CA
Email: cthansen@stanford.edu

Abstract—Recognition of features in topographic maps is
useful for GIS applications. In particular, elevation data can
be extracted and utilized by recognizing contour lines in maps.
In this project, the viability of contour extraction using image
segmentation and Delaunay triangulation for line reconstruction
was investigated. Results suggest that, while the method has a
high success rate for well behaved maps, it may be limited when
applied widely.

I. INTRODUCTION

Topographic maps offer a rich selection of data on the
surface of the Earth, ranging from terrain type to land features,
both natural and man-made. Perhaps one of the most ubiqui-
tous features on topographic maps is the presence of contour
lines to represent elevation data. These contour lines are often
monochromatic brown and are closed with themselves or the
edges of the map, by definition of being a contour.

However, as mentioned, contour maps include a great deal
of non-contour information that often cross contour lines, mak-
ing the task of recognition difficult. In the past, map providers
such as the USGS have had to resort to manual means to
extract map data [1]. Such methods are time consuming and
costly, and therefore motivate the desire to extract contour lines
and other map features automatically.

II. ALGORITHM

Investigation into related work shows that while there is a
high level of agreement for some parts of the contour extraction
process, such as image segmentation, approaches diverge when
attempting to reconstruct contour lines from their recognized
pieces [1], [2].

To motivate further discussion, each step shall be applied
and discussed on the example image given in Figure 1 [2]. This
map shall be defined as “well behaved”: as can be observed, the
contours are monochromatic and approximately brown. More
importantly, each contour is distinct from all others; in other
words, there is a sufficient gap between neighboring contours
so that each contour can be recognized as being separate. As
can be seen in the image, there are a number of features such
as grid lines, rivers, and text that overlap the contours and
would hinder extraction if it were attempted from the original
image.

A. Segmentation

The first step in processing the map image is to isolate the
contour lines from other map components. To accomplish this,

// ,// l’%i{i‘?g_u_

7@‘__.“__ YN =

y |

\ L\

\ i ifel

i o |

l 2020,2 A

;/ ¥

31y \
S B) o S L"_ e
i |68
1:’ ‘r 1N
o ﬁ* A
{ } \)

Fig. 1. Original map image

one can leverage the previously mentioned monochromaticity
of contour lines to segment the original image by color. As
is suggested by most previous research [1], [2], the RGB
color space is not ideal for this segmentation, due to being
perceptually non-uniform. It is therefore proposed that the
HSV color space be used during image segmentation because
of its improved uniformity while being easily invertible to
RGB [1].

When considering segmentation, it is important to consider
the other colors that may be encountered in the map. Probably
the most dominant colors will be green for forested areas, blue
for water, white for areas with no vegetation, black for grid
lines and roads, brown for contour lines, and various other
colors for other features. During segmentation it is important
to ignore all these other colors. Salvatore et.al [2] proposes
a heuristic for segmenting HSV images where colors with
value < 0.25 can be classified as black and colors with
saturation < 0.20 and value > 0.60 can be classified
as white and can be ignored. Among the remaining results,
colors with 0.1 < hue < 0.3 can be classified as brown
contours. Experimental results showed that this heuristic was
decent, but results were able to improved by changing the black
classification to value < 0.5 and the brown classification to
0.0 < hue < 0.2. The results of applying this segmentation
heuristic to the original image can be seen in Figure 2.

As can be observed, the image has segmented fairly well,
such that it still has the “well behaved” behavior defined

Fig. 2.

Segmented image

previously. As expected, though, there are now breaks in the
contours due to the other overlapping features that must be
closed.

B. Thinning and Tracing

Given the segmented image, it is desired that the original
set of potentially broken contours, which shall be referred to
as sub-contours, be extracted. In order do so, something as
simple as using the Moore contour tracing algorithm, as is
suggested by Pradhen et.al [5], can be done. However, in order
for Moore tracing to achieve good results for this application,
it is desirable that each contour that is traced be only one pixel
thick.

In order to reduce the segmentation results, which clearly
have contours which are thicker than one pixel, to a single
pixel, a thinning algorithm should be run on the segmented
results. Research of existing literature [4] proposes that a
morphological thinning operation would be sufficient to reduce
the segmented image to a thinned image suitable for Moore
contour tracing.

The Moore tracing algorithm is implemented uses a clock-
wise search pattern and has the termination condition of revis-
iting the starting pixel twice. In addition to extracting the pixels
that fall on a contour, it is desired to also find the endpoints of
the contour if it is not closed with itself. Knowledge of end-
point locations is necessary for future steps in the algorithm,
and they are most easily and accurately computed in parallel
with the Moore tracing algorithm. A heuristic definition for
an endpoint is any pixel on the contour that is visited half as
often as the interior pixels. Experimentation with this heuristic
shows that not only does it extract the expected endpoints,
but it also identifies branches on contours as endpoints. These
branches, an example of which can be seen in Figure 3),
are often artifacts from image segmentation and thinning.
It is problematic if extraneous endpoints are detected since
they will introduce false data used during line reconstruction,
so a secondary heuristic is necessary to ensure that branch
endpoints are removed. The implemented heuristic uses the
fact that branches are often only a few pixels in length and
occur towards the middle of contours to make the assumption
that the set of two possible endpoints that are the farthest

Fig. 3. Branched contour

Fig. 4. Sub-contour extraction

apart from one another (in terms of contour pixels) are the
two actual endpoints for a sub-contour. Experimentation with
this heuristic showed that it produced correct results in nearly
every “well behaved” map. Running the segmented image
through the thinning, Moore contour tracing, and endpoint
finding algorithms yields each contour in a vectorized form
which can then be processed further. As can be seen in Figure
4, which shows the results of these steps on the previously
shown segmented image, the results from this step are quite
good.

C. Curve Reconstruction

As was previously observed, as a result of segmentation,
there are many gaps and broken contours. The process of
thinning and tracing reduces the segmented contours to
vectorized form, but the gaps still remain. Therefore, the
key aspect of correct contour extraction is to have have a
robust method of coalescing broken contours back into closed
contours.

1) Delaunay Triangulation: Research conducted by
Amenta et.al [3] proposes a method for curve reconstruction.
To summarize their work, they propose that the Voronoi
vertices from a sufficiently sampled set of input curves
approximate the medial axis of the sample points. The
Voronoi vertices, along with the curve’s vertices, can then be
used to construct a Constrained Delaunay Triangulation. The
observation was that any Delaunay edge from the triangulation
that connects a pair of original points can be surmised to be
part of a contour.

Therefore, the proposed algorithm is to take the set of all

!

[n [
.

e

Fig. 5. One iteration of Amenta’s algorithm

pixels from all curves found during tracing and find the set of
Voronoi vertices. The union of these sets of pixels is used in
a Constrained Delaunay Triangulation. Based on the resulting
Delaunay edges, the algorithm searches for any edge where
both the start and end pixels are in the set of endpoints, also
gathered during tracing. For any such edge, the set of pixels
and endpoints belonging to each sub-contour connected are
merged, along with the pixels that fall on the line connecting
the two endpoints. The connected endpoints are then removed
from the set of endpoints for the new sub-contour. The results
of running this algorithm once can be seen in figure 5.

After running this process it can be observed that, while
some sub-contours were merged and closed, others were
not since no Delaunay edge fell between endpoints. As
observed by Salvatore et.al [2], if contours that have been
closed are removed and only the unclosed sub-contours are
considered, the Delaunay triangulation is simplified. Using
this fact, an iterative approach is proposed where the algorithm
described by Amenta is run repeatedly, where each closed
contour is removed from the set of contours processed by
Amenta’s algorithm. This is run until the set of sub-contours
“stabilizes”, in other words no other contours are being closed
using Amenta’s algorithm.

One important consideration for this iterative algorithm is
how to recognize a contour as being closed. A simple method
that holds as long as endpoints are correctly identified is to
say a contour is closed if and only if the set of endpoints
associated with the contour is empty. Since the endpoint
extraction method discussed previously proved to be robust,
this method for detecting closed contours worked well as
well.

2) Euclidean Closing: Since Delaunay Triangulation may
not close all sub-contours, it is necessary to have a fall-back
algorithm such that all contours can be closed. It is proposed
that connecting sub-contours that have endpoints the lowest
Euclidean distance apart is a valid approach for the alternate
closing algorithm. While experimentation with Euclidean clos-
ing on sub-contours prior to Delaunay Triangulation yielded
many false connections, due to the close proximity of contours,
Delaunay Triangulation successfully closes enough contours
that the failure rate of Euclidean closing is substantially lower.
Furthermore, when finding endpoints to close using Euclidean

Fig. 6. Post reconstruction

closing, both endpoints must agree that the other endpoint is
the lowest Euclidean distance away in order for closing to
occur.

A special case of Euclidean closing is a contour with
the edge of the image. In order to do this, four artificial
endpoints are considered when finding the the endpoint with
the minimum Euclidean distance. These four endpoints fall
on each edge such that the distance of the endpoint being
considered to each edge is minimized. With the addition of
these endpoints, a sub-contour will now close with an edge if
it is closer to an edge than any other endpoint.

While this method works fairly well, it proves to be
problematic in the case of a broken contour that falls very
close to the edge, as the sub-contour will close with the edge
rather than the other sub-contour. A heuristic to attempt to fix
this is to multiply each edge distance by a certain constant,
making them less likely to be chosen in this edge case. While
the heuristic helps, it clearly does not completely remove the
problem, and may actually cause additional problems of sub-
contours not closing with the edge when they should.

It is the intent of the Euclidean closing algorithm to be run
once each time the iterative Amenta’s algorithm stabilizes, so
that further progress can be made in closing the contours. The
steps of running Amenta’s algorithm until it stabilizes followed
by one iteration of Euclidean closing is repeated until all sub-
contours are closed.

III. RESULTS

The results of running the delineated algorithm on the
original image shown in Figure 1 can be seen in Figure 6. As
can be observed, all contours have been closed, with a high
degree of accuracy to the original image. However, there are a
number of invalid closings which occur as an artifact of using
Euclidean closing. These happen because, as can be seen in
the example in Figure 7, the distance between two endpoints
on adjacent contours is less than the distance between two
endpoints on the broken contour.

Unfortunately, no formal test metric was able to be
designed due to time constraints. However, a proposed metric
could be randomly generating input images, artificially insert-
ing gaps in these images, executing the algorithm to extract the
vectorized contours, and computing the percent of pixels that

1%)

Fig. 7. Invalid closing
1
0.9
0.8
0.7
‘ 0.6
“ 0,5
0,4
k. 0,3
¥ ~
0,2
w 0,1
0
Fig. 8. Surface model

agree between the output and input images. Despite the lack
of a formal metric, a fair amount of testing was performed on
images acquired from the Internet that found the algorithm to
perform fairly similarly as to the example traced through this
paper, given that the image was well behaved.

Once result contours are extracted and reconstructed from
a map, the data can be used for any application desired. As
a proof of concept, a three dimensional surface model was
created and can be seen in Figure 8.

IV. FUTURE WORK

Though the algorithm presented achieves good results, the
key aspect that has been reiterated throughout this article
is that the image must be “well behaved”, in other words
must conform to an expected color for the contours and have
the contours sufficiently spaced. Additional changes to the
algorithm can be made as well to improve performance, as
shall be further discussed.

A. Variable Contour Color

As mentioned, currently contours must fall within a color
range in order to be recognized, which presents issues if a map
being processed does not have contour of that color. An im-
provement for the algorithm would be to dynamically estimate
the contour color and segment based on this estimation. San
et.al [1] propose a technique for contour color estimation by
inferring the background color and utilizing histograms of the
hue channel in order to improve segmentation.

B. Closely Spaced Contours

In images where neighboring contours are to closely
spaced, an example of which can be seen in Figure 9, seg-

Fig. 9. Closely space contours

mentation of the image results in the coalescing of neighbor-
ing contours, which is causes the current implementation of
contour tracing to fail to recognize each contour as distinct.
There is no clear solution to this issue at this time, but it is
worthy of further research and consideration.

C. Improve Euclidean Closing

As was seen previously, Euclidean closing the the main
point of failure for the application, and it is therefore worth
finding an alternate secondary contour closing method. Basic
consideration suggests that the direction of a sub-contour
prior to its endpoint should be considered when closing.
Salvatore et.al [2] proposes further utilizing Voronoi vertices
by considering the Voronoi vertices adjacent to each endpoint
when choosing a endpoint to close with.

D. Text and Other Feature Recognition

Often, having the contours is not enough; rather it desired
that each contour is labeled with its height. Therefore, it is
proposed that map images be passed through a preprocessor
that performs OCR operations to extract height labels, and
then these labels will be assigned to contours postprocessing
based on their original locations. While conceptually straight
forward, there is no doubt a great deal of work in accurately
performing OCR on the original images.

ACKNOWLEDGMENT

The author would like to thank Professors Bernd Girod and
Gordon Wetzstein, as well as the whole EE368 teaching for
creating and teaching such a quality course.

REFERENCES

[1] San, L.M.; Yatim, S.M.; Sheriff, N.A.M.; Isrozaidi, N., “Extracting
contour lines from scanned topographic maps,” Computer Graphics,
Imaging and Visualization, 2004. CGIV 2004. Proceedings. International
Conference on , vol., no., pp.187,192, 26-29 July 2004

[2] Salvatore, Spinello; Guitton, Pascal, “Contour line recognition from
scanned topographic maps,” Journal of WSCG 12.1-3 2004.

[3] Amenta, Nina; Bern, Marshall; Eppstein, David, “The Crust and the -
Skeleton: Combinatorial Curve Reconstruction,” Graphical Models and
Image Processing, Volume 60, Issue 2, March 1998, Pages 125-135,
ISSN 1077-3169

[4] Jang, B.-K.; Chin, R.T., “Analysis of thinning algorithms using mathe-
matical morphology,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on , vol.12, no.6, pp.541,551, Jun 1990

[5] Pradhan, Ratika; Shikhar Kumar; Ruchika Agarwal; Mohan P. Pradhan,
Ghose M. K., “Contour line tracing algorithm for digital topographic
maps.” International Journal of Image Processing (IJIP) 4, no. 2 (2010):
156-163

