
Scrabble Assistant

David Koeplinger
Department of Electrical Engineering

Stanford University
Stanford, CA

dkoeplin@stanford.edu

Abstract—Scrabble is a commonly played word game in
which players take turns forming words using a set of seven letter
tiles and placing them onto a grid, following placement rules
similar to a crossword puzzle. Various applications exist for
helping players with forming words from their tiles, but few
account for all of the possible positions on the board simply
because manually entering the board state is tedious. This paper
presents an image processing algorithm for extracting and
recognizing characters from Scrabble game boards for use in
general Scrabble backends. In the test images used to evaluate
this algorithm, boards were digitized with 87% character
accuracy on average.

Keywords—Scrabble; character recognition

I. INTRODUCTION

Scrabble is a commonly played word game in which
players take turns forming words using a set of seven letter
tiles and placing them onto a grid, following placement rules
similar to a crossword puzzle. Points are awarded based on the
sum of values of individual letters, along with letter and word
multipliers positioned regularly throughout the board. While
turns are not usually timed, creativity and vocabulary are both
important to achieving a high score. With the increasing
popularity of Scrabble-like online games like Words with
Friends, various websites like wordfind.com have been created
to help players create words from their set of tiles. However,
the most challenging (and often most frustrating) part of the
game still remains: the player needs to find a spot on the
existing board to put their word given Scrabble's placement
rules. Commercial applications rarely take the board state as
input; entering the board manually is tedious for the user, but
digitizing the board automatically is relatively complex and
may be unreliable. This paper presents an image processing
algorithm for digitizing Scrabble boards from a single image of
the board. The algorithm is evaluated for use with a Scrabble
"oracle" backend which takes as input a board state and a set of
tiles and suggests the best possible scoring word to the user.

II. IMAGE PROCESSING ALGORITHM

A. Assumptions

This algorithm assumes that any perspective skew in the
input image is small. In particular, it assumes that visible tiles
on the board are approximately square and roughly the same
size. It also assumed that the Scrabble board is a standard 15 x
15 grid and that most of the board is visible in the image. All
figures used in this section are from processing steps for image
13. The results for the remaining images can be seen in the
Results section and in the Appendix.

B. Tile Size Estimation and Normalization

The image is first converted to grayscale and adaptive
histogram equalization is applied to account for local variations
in image brightness, such as glare from the Scrabble board
itself.

In order to determine which regions of the input image are
relevant text, the size of the characters must first be estimated.
This estimation is made using the size of empty squares on the
board (characters on Scrabble tiles are roughly half the size of
the tiles). To estimate tile size, maximally stable extremal
regions (MSERs) are located. Regions are restricted to be no
larger than 1/225th of the area of the image. MSERs with a
width and height that differ by more than 0.1% are discarded,
as are regions with less than 100 pixels and regions with a
density less than 80%. The median width of the remaining
regions is then taken to be the tile size. The image is then
resized such that tiles are 30 pixels wide.

Fig. 1. Square MSER width distribution for Image 13. The vertical line is the
calculated median width.

C. Grid Detection

Following tile size normalization, the edges of the rescaled
grayscale image are calculated using the Canny edge detector.
Edges are then merged using a close operation with a disk
structural element of radius six. This creates a connected region
of tile borders forming most of the 15 x 15 grid, but it also can
connect the board to extraneous image details, such as the
nearby Scrabble logo on the board. To counteract this, the
merged edges are then repeatedly dilated with a small (3 pixel)
vertical structural element and eroded with a similarly sized
horizontal element. This has the effect of eliminating horizontal
bridges in the edge map while also preserving most of the
features of the grid. The region with largest area within the
edge map is then taken to be the board's grid. This area is then
closed with a structural element approximately the size of a tile
to convert the edge map into a blob.

D. Perspective Skew Correction

Although the input image is assumed to have small skew,
even small viewing angles can affect the simple strategy later
used to map character regions to a 15 x 15 matrix. To
counteract this, corners are located within the previously
isolated grid. The minimum bounding quadrilateral [2] is then
computed to estimate the actual boundaries of the board (see
Fig. 2). The affine transformation from the bounding
quadrilateral's corners to an unskewed square are computed.
The side of the square is calculated as the mean of all of the
bounding quadrilateral's sides. The grayscale image is then
transformed using this affine matrix and cropped.

A

B

Fig 2. Perspective skew correction of Image 13. A) Quadrilateral mapped to
corners of resized image, shown overlaid in blue. B) Image after affine
transformation.

E. Grid Fitting

Once the image has been transformed, the board's grid is
now roughly aligned with the horizontal and vertical axes.
However, the grid's alignment with the axes is not perfect due
to small errors in the skew correction and other small
irregularities such as curvature due to the board not being a
completely flat surface. In order to determine the locations of
characters on the board, a grid must be fit to the image. This is
initially done by dividing horizontally and vertically by 15 in
each dimension. The image is gamma corrected to sharply
increase the contrast of bright regions, emphasizing empty
squares. Square MSERs in the resulting image are again
located as before. The image is then gamma corrected to
strongly increase the contrast of dark regions, emphasizing tiles
and characters. Square MSERs in this image are located as

well, but with a width : height ratio threshold of 5% since most
characters are not completely square. The resulting two sets of
regions are concatenated and eroded to increase the distance
between them. These regions are then classified by their
location with the horizontal and vertical lines of the rough 15 x
15 grid previously created. These borders are then refined by
moving vertical and horizontal boundaries to the mean of the
distance between regions on either side of each boundary.
Boundaries are not moved if no regions were found on at least
one side. As seen in Fig 3., the resulting grid is then a close fit
to the skew corrected image.

Fig 3. Grid fit for Image 13. Blue lines represent calculated horizontal and
vertical boundaries. White regions show the MSERs used to refine the grid.

F. Character Detection

Now that the image has been discretized using grid
boundaries, characters can be mapped to the grid based upon
their centroid. Characters are recognized using the algorithm
described by Chen in [1] to recognized and isolate characters in
natural images. A brief outline of this algorithm follows.

Fig 3. Isolated character candidate regions in Image 13.

MSERs of the image around the expected size of characters
are computed, then intersected with the original image's edge
map. These intersections are then grown along the local
gradient of the original image, then inverted and intersected
with the edge-enhanced MSER map. This has the effect of
“pushing” noise away from areas with strong edges, like
characters. It also has the side effect of eroding characters
slightly. Tile sizes were previously normalized to ensure that
this erosion effect does not eliminate any characters.

Fig 4. Template matching results for character 'O' in Image 13.

The remaining regions in the image are then filtered. The
first pass removes regions based upon expected minimum and
maximum area of the characters, as well as typical eccentricity
and solidity of character regions. These parameters required a
small amount of fine tuning to properly capture the standard
Scrabble font. The second filtering pass eliminates regions
based upon stroke width variation. A third filtering pass added
for the Scrabble algorithm filters regions by height and width,
since the expected range of dimensions for characters is well
known in this context. An example of the final character
candidates resulting from these filtering passes can be seen in
Fig. 3. Note that characters which inscribe a closed area
occasionally have regions within them. This is generally not an
issue, since the area of those regions is usually smaller than the
character's total area.

G. Character Recognition

After being isolated, the character candidate regions are
categorized. The final character recognition method used
template matching based upon a set of reference tiles, but other
methods were attempted as well (see Discussion). The Hough
transform of the reference tiles are precomputed during
extraction and angles corresponding to the top twenty peaks are
extracted. To compare a character candidate region to the
templates, the Hough transform is first calculated for the
region. The character region's rotation angle is estimated by
computing average of the difference between its top twenty
angles and each template's, individually. The region is then
rotated separately for each template and fit to the template,
counting the number of pixels which differ. Since angle
estimation using the Hough transform is not always accurate,
the same process is also done without any angular correction.
The templates with the smallest error across all comparisons is
chosen as the region's label. Note that this process assumes that
non-character regions have already entirely been filtered out
and makes no attempt to classify regions as non-characters.

Fig 5. Template matching results for all character candidate regions in
Image 13.

After labeling, the character regions are then classified by
their center's relation to the grid previously fit to the warped
image. Grid locations are classified by the most commonly
occurring label within that grid. The label of each grid is then
written to a file for processing

H. Board Representation

The matrix of characters is represented as a 15 x 15 grid,
with dashes for empty squares and lowercase characters for
letter tiles. Rows are separated by linebreaks and columns are
separated by spaces. This file can of course be used in any
backend of interest. For evaluation of the algorithm, the
backend used was a Scrabble oracle written in Scala which
determines the best possible word to play given the user's set of
tiles and the current board state.

III. RESULTS

The Scrabble image processing algorithm was evaluated on
a series of thirteen images taken from an online Scrabble
"sweepstakes" [5], which challenged players to find the
maximum scoring word given an image of the board and image
of their tiles.

The character recognition rates can be seen in Fig 6. These
rates are calculated as the number of correctly recognized
characters in the image, ignoring blank tiles. Character
recognition is, on average, 87% accurate, spanning between
100% and 78% depending upon the image.

Fig 6. Character recognition rates for all images evaluated, in percentag
points. Recognition rate is calculated as the number of correctly recognized
characters divided by the actual total number of characters in the image (no
blanks).

The output of the Scrabble algorithm was fed into a
Scrabble oracle. Fig 7. outlines the results of the oracle.

TABLE I. TABLE TYPE STYLES

Oracle Results
Human

Best
Pts

Best
Possible

Pts
Scrabble

Assist. Best
Pts

1 UNITIES 73 INQUIET 74 INQUIET 74

2 SNARKIER 78 INSANER 83 SNARKIER 78

3 REALISM 79 REALISM 79 SIMILAR 67

4 OBLONGS 74 ENGLOBES 76 ENGLOBES 76

5 ICEBOAT 73 ICEBOAT 73 ICEBOAT 73

6 TURTLERS 71 ULSTER 74 ULSTER 74

7 TAWNIER 81 WANIEST 86 WANIEST 86

8 PROSING 91 PROSING 91 PROSING 106

9 AGONIES 75 OCEANIDS 75 OCEANIDS 75

10 SMOKING 75 SMOSING 82 SMOSING 82

11 QUESTING 77 QUESTING 77 QUEINGS 77

12 CLAMMER 99 CLAMMER 99 CLAMMER 99

13 LIFTGATE 74 LIFTGATE 74 GANEF 30

Fig 7. Table of results from Scrabble sweepstakes

IV. DISCUSSION

As can be seen in Fig 7., character recognition was not
always reliable enough for the oracle to return words that
scored the highest possible amount. In several cases, the words
are actually invalid because they do not match the actual tiles
on the board. This demonstrates how important character
recognition accuracy is for this task – a single character wrong
can mean missing the best possible word. For this algorithm to
be commercially viable, future improvements should focus on
improving character recognition accuracy. Most of the errors
made during character recognition are immediately
understandable – eg. recognizing a O for a D, an I for a T, etc.
Improving the error classification beyond a simple count of
differing pixels may go a long way towards improving
character recognition accuracy. Grouping the differing pixels
into regions and calculating the average area of each region, for
example, may be a better error metric.

The character recognition method used in this paper was
based upon template matching. Many other single character
recognition techniques have been proposed. The Banagrams
solver [5], for example, compared the first four Hu moments
[4] of character candidates and as shown to be extremely
reliable for that application. An algorithm for individual
handwritten recognition is proposed in [6] but was not very
accurate on the Scrabble text. There are also existing Optical
Character Recognition (OCR) engines, but these tend not to do
well on individual character recognition without manipulating
the image extensively.

V. FUTURE WORK

Blank tiles are not detected in this version of the algorithm.
One approach to detect these tiles might be to use gamma

correction to find regions of the board which are covered, but
which have no characters. This approach would of course have
to be made robust to local variations in brightness across the
image.

All evaluation images have a small amount of perspective
skew, but the algorithm still needs to be evaluated on images
with larger skew, as well as on images taken where characters
are rotated by more than 35 degrees (from the opposite side of
the board, for example). The algorithm could also be evaluated
on and made more robust to a variety of Scrabble board styles.

This algorithm is currently implemented in Matlab using the
Visual Processing Toolbox. In the future, it could be ported for
use as a mobile application.

ACKNOWLEDGMENT

The author would like to thank Andre Araujo for his
suggestions on improving the algorithm as well as Huizhong
Chen for his extremely helpful tutorial on character detection
and isolation in Matlab.

REFERENCES

[1] Chen, Huizhong, et al. “Robust Text Detection in Natural Images with
Edge-Enhanced Maximally Stable Extremal Regions.” Image Processing
(ICIP), 2011 18th IEEE International Conference on. IEEE, 2011.

[2] D'Errico, John. “A suite of minimum bounding objects” Matlab File
Exchange.
http://www.mathworks.com/matlabcentral/fileexchange/34767-a-suite-
of-minimal-bounding-objects

[3] Hu, M. (1962). “Visual pattern recognition by moment invariants.” IRE
Trans. Information Theory, vol. 8, no. 2, 179 - 187.

[4] Leung S., Perkins, S., and Rhoades, C. “Bananagrams Tile Extraction
and Letter Recognition for Rapid Word Suggestion.” EE368 Winter
2013-2014, unpublished

[5] Paul Rivas, “Sunday Scrabble Sweepstakes.” One Sorry Blog.
WordPress. 2007. https://onesorryblog.wordpress.com/category/sunday-
scrabble-sweepstakes/

[6] Gaurav, D. D. and Ramesh, R. (2012). “A feature extraction technique
based on character geometry for character recognition.” CoRR, vol.
abs/1202.3884.

SUPPLEMENTAL MATERIALS

Koeplinger_Scrabble_Assistant.zip

This compressed file includes the Scala Scrabble oracle and the
Matlab implementation of the algorithm. It also includes the 13
images used for evaluation and the corresponding tile images,
as well as the “gold” files for each.

A slightly larger Scrabble board and tile rack image database
was collected for this project, but is not included with the
source code. If you are interested in building upon this project,
feel free to contact the author for the larger database (see email
in paper heading).

http://www.mathworks.com/matlabcentral/fileexchange/34767-a-suite-of-minimal-bounding-objects
http://www.mathworks.com/matlabcentral/fileexchange/34767-a-suite-of-minimal-bounding-objects
https://onesorryblog.wordpress.com/category/sunday-scrabble-sweepstakes/
https://onesorryblog.wordpress.com/category/sunday-scrabble-sweepstakes/

APPENDIX

Quadrilateral mappings for all thirteen images

Images after affine mapping

Images after grid mapping

Images after character isolation. Note that the small size adds some distortions to the image.

	I. Introduction
	II. Image Processing algorithm
	A. Assumptions
	B. Tile Size Estimation and Normalization
	C. Grid Detection
	D. Perspective Skew Correction
	E. Grid Fitting
	F. Character Detection
	G. Character Recognition
	H. Board Representation

	III. Results
	IV. Discussion
	V. Future work

