
Star Mapping Algorithm

Darick W. LaSelle

Stanford University Department of Electrical Engineering

dwlaselle@gmail.com

Abstract—This paper proposes a project investigating how to

map a set of points (presumed to be stars) onto a star map. It will

implement an algorithm that does star mapping and explore the

robustness of the algorithm.

Keywords— digital image; point-matching star map;

I. INTRODUCTION

This is an ambitious project. Getting, understanding, and
parsing a star map itself is a non-trivial task. Next, while Star
Mapping is well understood, algorithms to implement star
matching are not highly available in the public domain as
anything other than rough descriptions, so implementing one
requires some effort. Finally, trying to use real star imagery
and parse that image for mostly valid stars will be a final effort
if time permits. I’d like to try applying this to a real-time video
of a starry sky as a further stretch goal.

With these tasks in mind, this paper proposes the following
breakdown of the project:

1) Obtaining a star map and parsing it into code or

lookup database.

 There are lots of star catalogues out there:
http://www.astronexus.com/node/34
http://answers.google.com/answers/threadview/id/282438.html
http://www.projectrho.com/public_html/starmaps/catalogues.p
hp

There needed to be research for which will be best for this
project, based on: coordinates used, number of stars (only care
about visible stars and should filter out non-visible ones either
prior to using the data, or dynamically), and how easily it will
integrate with the code.

2) Researching, choosing, and implementing a star

matching algorithm.

There are a few papers that talk about matching a star chart to
visible stars. This kind of star mapping is used today in a few
satellites to determine orientation of the satellite.

http://www3.sympatico.ca/vpaquin/tutorial/tutorial1.htm
http://ntrs.nasa.gov/search.jsp?R=19960035749
http://pdf.aminer.org/000/994/725/an_application_of_point_pat
tern_matching_in_astronautics.pdf

The algorithm is an application of point matching. It'll have
two sets of points … a database and a query set. Searching the
database for the “best” match including transforms for this set
of points is an application that should be highly scalable. This
will be the meat of the project. Initially, it will use reference
points that are manually taken from the database and

transformed by hand to have some searches that the answers
are known in advance. I can then experiment with removing
less luminous stars from our query set of points and applying
more aggressive transforms to determine if the algorithm
performs well..

3) Processing real star imagery for points.

I can take photographs of night sky as well as get images

off the internet. Processing them will be the more difficult part,
but should be much easier with Digital Image Processing. This
will be a test of whether I can map “real” imagery to the star
database. This is assumed to be a stretch goal.

II. PREVIOUS WORK

Point matching algorithms have existed, and been well
vetted, for many years. As a specific example, the Institute for
Aerospace and Astronautics of theTechnical University of
Berlin uses point matching to measure position and orientation
on their satellites. [1] Additional work on this application was
published in 1994 in Academic Press Limited. [2] This early
work identifies that the concept is feasible, even with limited
computing power. However, I was not able to locate any
detailed descriptions of the algorithms. The majority of the
code developed for the star matching system and the data used
to test the system has been organically developed.

III. PROGRAMMING IMPLEMENTATION

A. Basic Algorithm

The basic algorithm for point matching is:

 Identify a point

 Find an adjacent point (neighbor), and set it as a
reference neighbor

 Find additional neighbors

 Match the parameters to associated truth files

 Score the comparisons

 Select a best match (if one exists)

Identifying the first point is an arbitrary selection. For most
of the pieces of the program design, a point in space is selected
irrespective of whether or not it is a star. Some limited testing
was done by selecting a star, but that inevitably creates
increased specificity which is undesirable for the current tests,
though may be useful in creating a mapping of the entire sky.

 Assign a distance from a point that is an acceptable region
(this can be a region close to a star, or an entire constellation,
depending on the place in the program/testing). This value is

http://www.astronexus.com/node/34
http://answers.google.com/answers/threadview/id/282438.html
http://www.projectrho.com/public_html/starmaps/catalogues.php
http://www.projectrho.com/public_html/starmaps/catalogues.php
http://www3.sympatico.ca/vpaquin/tutorial/tutorial1.htm
http://ntrs.nasa.gov/search.jsp?R=19960035749
http://pdf.aminer.org/000/994/725/an_application_of_point_pattern_matching_in_astronautics.pdf
http://pdf.aminer.org/000/994/725/an_application_of_point_pattern_matching_in_astronautics.pdf

actually a degree reference. The declination and right
ascension angles are assumed to correlate to a Cartesian
coordinate system (mathematically acceptable due to the small-
angle approximation). [3]

For each point (star) in the selected region, perform the
following calculations:

A second point is selected (order is irrelevant as will be
explained further on) and the line segment from the first point
to this second point will be used as a reference angle. Every
point identified past that point that is within the acceptable
distance is referenced from that first point using the assumption
that the angle from the central star to this second star will be
defined as 0º. This step saves a processor operation later,
because the testing will need to identify reference angles
anyway. It is worth noting that the industry standard for
referencing stars is J2000, which means it is where the stars
were at noon on January 1, 2000. That is important to note that
here, because except at rare times, the rotations of the test
images are expected to be different from that of the truth data.
The additional points inside the region are then captured and
referenced to the center point. Their angles are coupled with
their relative distance (unitless) to create a description of this
point’s relative position to all the other points from this region.

The data thus far catalogued from this point is whatise
reference as a fingerprint file. An example fingerprint array is
shown below in Table 1. If we were to only look within 1.5
degrees of the star Alnilam in our filtered sky map, this is what
we would get.

The goal of this kind of file is to create a “fingerprint” that
can be reliably compared regardless of scale or rotation of the
comparison point. We developed this approach from a real
time shape matching approach.

RA:
84.1

Dec:
-1.2

Star 1 Star 2 Star 3 Star 4

Angle Dist Angle Dist Angle Dist Angle Dist

0 0.96 332 0.67 2.7 0.6 160 1.16

Table 1: Fingerprint array for Alnilam

Figure 1: Graphical Fingerprint for Alnilam

Every star in a truth fingerprint file will have a fingerprint
array associated with it. The point matching algorithm then
compares every star in the test file to every star in the
associated region. The score to a given point will be
representative of the best match of any one test fingerprint file
to a reference fingerprint file.

B. Comparing Fingerprint Files

For an example of how two fingerprint files are compared,

let’s look at the following example:

The image on the left with three rays will represent our

reference fingerprint file for a star, while the figure on the

right will represent a test fingerprint file. You can visually see

that the blue fingerprint exactly matches portions of the red

fingerprint, but let’s follow through how a computer might

look at this.

First, we must pick two rays to compare. Simply picking

the first ray of each fingerprint seems obvious:

It is equally obvious that these two images do not match.

In the comparison, note that while the first angle matches (by

declaration), the second does not. We can also quickly see that

the next possible rotation of the test image (setting the next

ray as the reference) does not produce a match.

The next step is to rotate the truth image. To, by

declaration, say that the second angle in the truth image is now

the reference angle.

This obviously creates a perfect match of the angles, and

the difference of scale of each ray will be similarly equal

(within a margin). Now we can say that the fingerprint

matches the reference image. This example should also show

why it is required to try all rotations of both the test image and

the reference image. If just the wrong angle is occluded, there

would be no matching results for a real match.

In this manner, test every rotation of the test fingerprint

(declaring each angle in turn to be the reference angle) to

every rotation of the reference fingerprint, and produce a

score. The score itself is not meant to be a measure of absolute

“truth”, but a confidence value. The score we used says that

we give up to 1.0 points for every angle matched within a

threshold. Each match then loses points if the scale of the two

radii do not match the scale of the first two reference angles.

Finally, we divide by the maximum number of angles in the

test fingerprint or truth fingerprint to find our total confidence.

C. Specific Programming Implementation – Framework

To begin with, not knowing which database I’d be using or

how the stars would be described, I started with stars as if they

were points in an image, and used relative X, Y coordinates.

For a first “test” image, I created a file similar to the red

reference fingerprint shown above (with a few more and less

regular angles). I used that to compare to itself to verify I

could match an image correctly.

From there, I stepped up to a points-representation of the

Orion constellation. Knowing that there was something that

mapped 1 to 1 images (but verifying it), I then scaled and

rotated that image randomly a few times to produce test data.

The beauty of this fingerprint implementation is that it should

produce results regardless of scale or rotation of the image.

Needless to say, this was the biggest debugging stage (and a

stage that produced log files on the order of 900MB for all the

processing that was required).

To do the comparison, you need to compare:

 The test star –to–

 Each star in the truth array –with–

 Each rotation of the test star –against–

 Each rotation of the truth star

So, four loops were needed to get through all the data. It is

easy to determine how many loop iterations are needed, then.

In the data set that was tested presenting, there were 80 stars

in the truth array and used those same stars as part of the test

array. Each fingerprint file, then, had one star with 79 angles

(we can limit to a nearest neighbor in the test cases for speed,

see Future Work). In this most straightforward of

comparisons, then, simply to compare one test file had 250E9

loop iterations to process through. Most of the work in

implementing this algorithm came from keeping track of the

four layers of indices for both the reference and test data.

D. Main database generation

The finding of a usable star database ended up being more

time consuming than originally expected. While there are

plenty of applications and applets available that will return a

star given its coordinates, and vice versa, none of those

provided access to the raw data. Additionally, some databases

had an embedded SQL database, but getting at the raw data

was again troublesome. I ended up finding two databases that

were in some respect usable. One from the Saguaro

Astronomy Club, and a second from David Nash, called the

HYG Database.

1) Saguaro Astronomy Club Database

This is a conglomerate of amateur astronomers, loosely

based out of Arizona. The database they provide has been in

the works for 20 plus years. [4] The descriptions and setup of

the stars appears to be very accurate, and is easy to work with.

The drawback from this database was that virtually all stars

visible to the naked eye are assumed to be a maximum

magnitude. In a point matching algorithm, that is not

particularly important, but being able to visually identify

constellations and stars is virtually impossible.

2) The HYG Database

(a)Matlab representation

(b)Sky Imagery

While not quite as easy to use initially, the HYG Database

generated by David worked much better for our application.

HYG stands for Hipparcos, Yale, and Gilese, and are the three

star catalogs that this database is a compilation of. [5] It has a

much more accurate magnitude reporting system, which has

made visual testing more plausible, and the database easier to

filter to the desired size. From this database, through Matlab,

you can produce images from a center point and visually

verify that we are looking at the same point.

It is clear from looking at the two images in Figure 2 that both

are looking at the same set of stars.

The HYG database allowed me to parse out the information

used in this database. The values are declination (dec), right

ascension (RA) and magnitude (mag). The magnitude given is

the stars apparent visual magnitude. For the sake of

generating the imagery out of Matlab, I converted the

logarithmic scale given by the \magnitude to a linear intensity

(ranged 0 to 1). I then used the fingerprint function described

in section 3.A to create a master fingerprint file.

E. Test file generation

In order to identify good benchmarks for “positive”

identification, a series of test files were created. For ease of

visual clarity, the section of the sky typically defined by the

constellation Orion was used. From a mathematical

perspective, the section of sky is described by Table 2.

Constellation Orion

Center RA 5.6 degrees

Center Dec -1.2 degrees

RA Range +- 10 degrees

Dec Range +- 10 degrees
Table 2: Test file numerical description

As part of the testing, a truth file was produced to match the
database exactly. Figure 3 shows the Orion truth image.

In order to be a useful star matching algorithm, the
consideration that no image will exactly match the test image
has to be taken. To test the image, images that closely match
the test image should be tested, and the matching scores
benchmarked.

Figure 2: Comparison of Matlab imagery using the HYG database

(a) to a real image of the sky (b)
Figure 3: Orion truth image

For each test file, one or more modification was applied from
the following list:

 Occlusion

 Addition

 Skewed Position

1) Occlusion

A number of factors can make a test image have fewer

stars than the truth file. Clouds, trees, birds, the moon, city

lights are just a couple of examples. The test files generated

ranged from no occlusion to 30% occlusion. That is, some

portion (up to 30%) of the stars from the test image was

removed. Figure 4 is an exaggerated case, where 50% of the

stars were removed. The easiest way to image this is looking

up at the sky in the middle of a city versus out in the desert.

The database is setup closer to the visible stars in the desert,

meaning that the pictures taken close to a city will have

significantly less stars when compared to the truth image.

This should have a low impact on the algorithm because

angles will still be perfect matches with the reference stars.

2) Addition

The other side of the spectrum is when things show up in

the pictures that aren’t actually stars. Satellites are the most

common stray point, and asteroids are another possibility.

Even airplanes might show up in an image of the night sky.

Figure 5 shows Orion with 50% addition. This will be the

most difficult for the algorithm to sort out, as many new

angles will be (falsely) introduced into the test fingerprint.

This is particularly easy to see in comparing the occlusion test

file verses the addition test file. The addition file would be

very difficult to pick out as Orion even for a human at 50%

addition, whereas the occlusion file is still quite obviously

Orion.

Figure 5: Orion with 50% addition

3) Skewed Position

Whether due to the atmospheric effect (twinkle), or motion

of the camera, it is possible for a star to be slightly skewed

on the image. The test images included different skewing

amounts up to 0.1 degrees. This skewing is shown in

Figure 6 (exaggerated to 1 degree). The skewing is

visually obvious if you look at the left hand star on Orion’s

belt.

Figure 4: Orion with 50% occlusion

Figure 6: Orion with up to 1 degree skewing on 50% of the stars

4) Combination

It is unlikely that one effect will be present on the image,

while the other two are not. The image shown in figure 7 is

what we refer to as the hail storm. It includes 50% occlusion,

50% addition, 1% skewing on 50% of the stars. This image is

not intended to be matched, but rather to visually exemplify

the range of the test.

Figure 7: Orion with maximum modifications

In total, 2662 separate images were generated to benchmark

the algorithm and decide how to score correct matches. We

used a narrowed down version of the HYG database to include

only those stars that have a magnitude brighter than 6, which

is generally assumed to be visible to the naked eye. This

database includes 5,007, and makes the truth file for Orion

include 80 stars.

IV. EXPERIMENTS

After the initial test experiments that showed I could get an

exact truth match between identical images and that scale and

rotation did not affect the answers, I moved on to a full scale

simulation.

I took the Orion constellation region (80 stars) and made a

reference map of all fingerprints in that region. I then took that

map and put it through the following permutations:

 Adding stars, 0 to 30% in increments of 3%

 Occluding stars, 0 to 30% in increments of 3%

 Wiggling stars, 0 to 0.1º in increments of 0.01º

.

Next, I looked at what the answers were telling us. To

measure the confidence score, since I attempt to generate a

score for every “best” match available, I can see how many

false positives we generate vs correct answers very easily. I

kept the reference to the “real” star that was in the chart, even

if it was moved or occluded. This let me compare real data to

real data.

This chart shows the number of matches that were correct

vs incorrect in each bin from 0 to 100 of the generated scores.

I could quickly pick a threshold of about 65 or 70 if we only

wanted to assure that multiple readings would generate a

majority (or in this case, a 2/3 majority) of correct positives. If

you then take the median of the direction of all the reference

stars matched, you would have the approximate center of the

image correctly identified.

Notice also that the false positives in the lower scores,

while they exist, are much smaller than the positive matches

of the higher scores. Higher scores, then, are that much more

certain, and while there are not any that scored “perfect”

(generated no false positives), if we have multiple stars in any

picture that generate a “good” score above our threshold, we

would be able to say with some certainty that we could

identify the orientation of that image.

Lastly, I wanted to look at the effect of “wiggle” on our

data. In the real world, stars appear to shift slightly due to

atmospheric conditions. We allowed for up to 0.1º of wiggle

in all of our stars. This is a huge amount that would not be

seen in the real world. As an example, take two stars in

Orion’s belt. They lie only 0.7 total degrees apart in the night

sky. One seventh of that distance is a huge amount of

movement and seemed appropriate as a maximum test.

To do this, I measured the number of “real” stars in any test

image as a ratio. This could go from 100% down to 70% as we

added stars. Occlusions would not impact this ratio, though

might have an impact on data where large amounts of added

stars existed (forming perhaps a majority of false angles for

some fingerprints). Plotted each of these ratios vs the

percentage of stars correctly matched and the amount of

wiggle.

We see that many of the ratios stay well above 80%

regardless of wiggle, but do decrease over larger percentages

of movement. We also see that the three worst starting ratios

are those that would have the most stars occluded and the

most stars added, as expected. Still, to have even those start at

over 90% success ratio and end higher than 50% in all cases

was better than we expected.

This chart shows only the true positives, so a threshold in

this case wouldn’t change the output we see here. In other

words, this is a “best case”, assuming you can know that a

match is correct or not. It shows that star movement can play a

large role in correct detection, as can occlusions and additions,

but to have a truly large effect, both problems must be highly

pronounced, which seems generally unlikely. Keeping in mind

that a star shift by even 0.05º would be unlikely (and even

more unlikely that every star in the image would be shifted

randomly by that amount), as well as the unliklihood of

finding an additional 30% stars in the night sky, it seems

reasonable to generally assume a match ratio of well over 90%

using this algorithm.

All in all, the algorithm performed very well, and should be

very scalable

V. DIGITAL IMAGE PROCESSING

With a high successful set of test runs, another major piece of

this project was to develop a way to compare date from real

imagery to the truth file. While this seemed like a very

daunting task, the use of DIP techniques learned in EE368 at

Stanford made it almost trivial. There were three steps

involved in taking a digital image, Thresholding, Region

Identification, and Point Mapping.

A. Thresholding

Thresholding is the simplest method of image segmentation.

From a grayscale image, thresholding can be used to create

binary images[6]. With most star images, almost any

threshold method will work, as there is such a high contrast

between the background and forground when looking at the

night sky. For this particular algorithm, I scaled the threshold

slightly in order to manipulate the number of stars pulled out

of an image.

B. Region Identification

Region identification is also sometimes called blob detection.

It is a systematic way to identify disparate regions of the

foreground image. It is especially effective on binary images.

The built in Matlab code “regionprops” contains a data set for

centroids, which provides exactly the information I was

looking for. Images 8-10 show the image processing steps on

the Bootes constellation.

Figure 8: Original Image

Figure 9: After Thresholding

Figure 10:Identified regions

C. Point Mapping

Point mapping is not universally held as the same thing,

especially when it comes to star mapping. For my purposes, I

identified the point (presumed star) closest to the middle of the

image, and made that the reference point, noting that it is

likley the target of the image if it is in the middle. From there,

ever point is mapped by its distance and angle. This data is no

available to use to test against the truth data.

D. Imagery Results

The results on the actual images were not as encouraging as

the test data. While the confidence scores seem tomakes sense

(most in the 50% range), there is not as large of a distinction

between the “correct” star and the next closest “incorrect” star.

This also led to more false positives

VI. FUTURE WORK

There are a lot of possibilities for future work in this

project.

 This algorithm can (and likely will) be modified to

fit into an OpenCL/GPU environment.

 The real imagery process should be verified again,

as there may be a small scaling issue or quadrant

trigonometry issue that can be fixed

 Lastly, improving how the confidence score is

calculated and implementing a threshold could

result in fewer false positives.

VII. CONLUSION

This is, I believe, a novel approach to point matching, and

with the advent of “embarrassingly parallel” computation,

may be a very effective way to match shapes.. It may not beat

current approaches (we’re not sure since they weren’t

available to study), but still produce excellent results and

could possibly be scaled to real-time.

I also found that our scoring metric for “confidence” was

fairly robust along a large range of parameters. After

comparing several fingerprints, we were able to say with some

confidence (by inspecting the median of the directions) what

the orientation of the image was.

There is a lot of possible future work that could be done,

but this was a wholly successful start.

VIII. ACKNOWLEDGEMENTS

The author would like to gratefully acknowledge Andrew

McLauthlin at the University of Colorado for his help in

vetting algorithms

IX. ABOUT THE AUTHORS

Darick LaSelle is a Controls Engineer for a pump and

compressor manufacturer in Arvada, CO, and is a graduate

student in the Electrical Engineering Department at Stanford

University.

[1] V. Paquin, “Point Pattern Matching,” [Online]. Available:

http://www3.sympatico.ca/vpaquin/tutorial/

[2] G. Weber, L. Knipping, H. Alt, “An application of point pattern
matching in astonautics” Aerospace and Astronautics of theTechnical
University of Berlin, J. Symbolic Computation (1994) 11

[3] (13 March, 2013), “Small-angle approximation”, [Online]. Available:
http://en.wikipedia.org/wiki/Small-angle_approximation

[4] S. Coe, “Saguaro Astronomy Club Database version 8.1,” [Online].
Available: http://www.saguaroastro.org/content/downloads.htm

[5] D. Nash, “The HYG Database,” [Online]. Available:
http://www.astronexus.com/node/34

[6] (Shapiro, et al. 2001:83).

http://www3.sympatico.ca/vpaquin/tutorial/
http://en.wikipedia.org/wiki/Small-angle_approximation
http://www.saguaroastro.org/content/downloads.htm
http://www.astronexus.com/node/34

