Amplification of Heart Rate

Matt Estrada
Department of Mechanical Engineering
Stanford University
Stanford, California 94305
Email: estradal @stanford.edu

Abstract—The goal of this project is to create a visualization
of heart rate in videos with multiple subjects. Previous work
[1] has created visualizations of heart rate for single subject
videos. Other work has automatically detected heart rate from
recordings of single faces [2]. Here we attempt to combine
these into the ability to detect multiple faces and amplify
them individually around a narrow range to emphasize each
individuals heart rate, and then combine the videos back together
to produce a visualization where relative heart rates are visible.

I. INTRODUCTION

To visualize pulse in subjects, some researchers have applied
Eulerian Video Magnification [1l]. This technique amplifies
color differences within a particular frequency spectrum to
enable visualization of otherwise imperceptible features. This
works well on a single subject with a known heart rate.
However, when applied across a broad range of frequencies
this results in significant noise in the rest of the spectrum.
This is particularly detrimental when you either do not know
the original heart rate, or have multiple subjects with different
heart rates present in your video.

People have also used multiple methods to identify heart
rate within the videos. One method is by performing principle
component analysis on the motions of the head [3]], which
was shown to work with detection of 0-3.4 bpm on a set of 18
subjects. Other people have used similar methods to extract out
principle components and correlate them with physiological
signals [4]. The method we are using here is based off a
slightly different method involving detecting the variations in
color over time and extracting a pulse out of that [2].

Here we aim to combine detection of heart rate with
amplifying it for visualization. To do this we first locate the
subjects of the video, then split the video into subvideos
for each subject and detect their individual heart rate. Then
we amplify the desired frequency range in each video and
recombine the videos to form a multi-frequency amplified
result.

II. FACE IDENTIFICATION AND TRACKING

To identify individual pulse rates, we first identify and
track the faces between frames. MATLAB has a built in face
detector in the computer vision library which we initially
used. However, this proved to be insufficiently accurate to
distinguish the face from the background, especially since
it would only report a rectangle bounding box around the
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Figure 1. Flowchart of processing for each video. Videos are split up into
subvideos for each face and then recombined at the end to form a multi-
frequency amplified video.

face. Therefore, we decided to use this as our initial guess
as to where the face was in the first frame and then search a
subsection of the video corresponding to an enlarged version
of that box in other frames. The bounding box has sides 60%
larger than the originally reported box and is centered at the
same location.

A. Face Keypoint Detection

For greater accuracy, we decided to track the face itself. We
chose an algorithm which would deliver 66 points around the
face, each with a unique ID [5]. For these points, we used
17 of them which defined the boundary along the chin and
lower face in order to create a convex hull corresponding to a
relatively flat area of the face.

Figure 2. Faces detected by Matlab recognition from first frame of video

B. Interframe Face Tracking

The algorithm could return an estimate of the face position
in each frame [5]. However, it would occasionally get the



face wrong which would lead to large undesirable spikes in
our heart rate signal (Figure [3). Therefore, during the initial
video processing we recorded the values of each of the 17
facial keypoints we were interested in. We then median filtered
these points and passed them into another pass through of the
video in order to get a better estimation of the face position.
This eliminated errors where a single frame had an incorrect
face recognition while still giving us fairly accurate face and
background areas to use for heart rate detection.
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Figure 3. Sample trace of point location over time. Misdetections are seen
as large spikes in the data. Median filtering removes the large spikes and also
smooths the curve helping to eliminate high frequency noise.

III. HEART RATE DETECTION AND FILTERING

To detect the heart rate, we divided each subvideo up into
three parts - the face region, the background region, and a
neutral unused region around the edge of the face. For each
of the face and background region, we computed the average
green value [6] in order to extract the pulse from it and
compare them with the background. We chose green because
there is the most variation in it for heart rate because of
properties of hemoglobin [6]]. We then applied filtering to the
face and background signals in order to extract a heart rate
estimate.

A. Region Segmentation

For each video, we assign a region to each face as described
above. These subvideos are allowed to interact, however the
algorithm prefers they do not so as to avoid conflating two
individuals pulse signals. Within that subvideo, SV, we assign
a face area, a background area and a neutral area based off the
tracked facial keypoints. To get the raw pulse signal, p, we use
the convex hull, F', and erode it by a structuring element, SFE,
which is a disk with a radius of 5% of the original bounding
box size. We then mask the face with this hull and take the
mean of the values within the masked area as the raw pulse
signal. An improved algorithm could also remove the forehead

from the background signal, perhaps by fitting an ellipsoid
through the chin points.

Draw = mean(mask(erode(F, SE),SV)) (1)

To get the background signal bg, we take the convex hull
and dilate it with the same structuring element. We then mask
the image with the inverse of this and take the mean of that
area for the background.

bg = mean(mask(1 — dilate(F,SE), SV)) (2)

This gives us an initial estimate of the pulse signal as well
as of the amount that signal would change based just off
lighting variations in the room. We discard the neutral area
as it contains both foreground and background signals.

Figure 4. Sample subvideo wiht detected keypoints and convex hull for
extracting signal

B. Filtering to Approximate Pulse Signal

The signals that we receive from the mean values of the
segmented areas are still very noisy. To better estimate the
pulse we first subtract off the background from the face area.
This allows us to better remove variations that are due to things
other than heart rate such as lighting variations. To do this,
we create a new signal
h * bg 3)

Pnobg = Praw —

where h is a constant determined iteratively from the two
signals in order to create the best value for subtraction based
off the combination of the setting and the subject’s facial
characteristics [2]]. Specifically, we assign an initial value of h
and then update it according to the following equation (from

(2D

(Praw — h(n) x bg) * bg
bg™H x by

where p is a parameter controlling rate of convergence
which we selected to give convergence within approximately
10 iterations.

After adjusting based off the background, we then fit a
low order polynomial to the data and then subtracted off that
trendline in order to try to correct for extremely low varying

h(n+1) = h(n) + p* 4)



effects of lighting. We tried polynomials of degrees 1-3, with
there being slight improvement with higher order polynomials,
so we kept the third degree polynomial (P, computed with
MATLAB'’s polyfit command) for the final setup.

Pdetrend = Pnobg — pOZyUal(P7 pnobg) (5)

After correcting for slow varying trends, we used a But-
terworth filter to filter out frequencies which would not be
able to correspond to generally plausible human heart rates.
Specifically, we had a band pass filter from 0.4 to 4 Hz,
corresponding to 24-240 bpm. With the exception of some
rare disorders that allow higher heart rates, this should allow
most human heart rates to pass through. For 20-39 year olds,
98% of resting heart rates fall between 48 bpm and 103 bpm
[7], so this is a sufficiently wide range.
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Figure 5. Raw and filtered signals used for heartbeat recognition

C. Estimation of Primary Heart Rate

Human heart rates do not actually proceed exactly as a
sine wave with a single frequency. Even accounting for their
non-sinusoidal shapes, adjacent heartbeats are not necessarily
identical lengths. A measure of this is referred to as the heart
rate variability, and for healthy adults tends to have a peak
frequency of 0.1-0.4 Hz [8], tending towards the lower side.
Therefore, a difference of 6-24 bpm might be created during
adjacent heartbeats. This is solved by averaging over several
beats. However, our total video length is only approximately
10 seconds due to processing time and so there can still be
a fair bit of variation. This is especially true in videos where
we had to get up in order to turn on the camera and then sit
back down.

To compute the heart rate, we took the Fourier transform of
the final filtered pulse signal. The heart rate we chose was the
maximum peak in the desired range (60-120 bpm). However,
there were often multiple peaks in the area and the highest was
not necessarily the one which corresponded to heart rate.This
produced a spectrum from which we could extract a primary
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Figure 6. Fourier transform of the heartbeat signal previously shown.

Excluded and allowed heartbeat ranges are marked.

frequency. We extracted only frequencies lying between 60
and 120 beats per minute in order to minimize errors and
corroborate with most adult resting heart rates (approx. 10th
to 99th percentiles [[7]). This also helped in removing breathing
rates, which fall in a similar spectrum to heart rates in terms
of order of magnitude, and can alias in into the heart rate
signal itself. Two potentially relevant signals for interference
are blinking (about 17 bpm and its aliases [9]) breathing (about
8-16 bpm [10]). These alias into the signal and can cause later
peaks at multiples of their frequency.

As an example, we tested signals consisting of sinusoids at
a breathing and heart rate corresponding to reasonable values
(breathing rate 10 bpm, heart rate 75 bpm), with the breathing
rate being approximately 10x stronger of a signal than the
heart rate (this appeared to give the closest comparison when
visually inspecting the signals and power spectrums). This
indicates that to get better results we need to either better
eliminate the breathing rate signal by tracking better, reduce
the noise, or generate an estimate of the breathing rate and
filter that out (or have people hold their breath during the
video as some authors have done). Even with a bandpass filter
around the breathing rate, this still did not provide acceptable
results (Figurd7).

We also tried using the Welch’s power spectral density, but
this did not produce good results and was unable to define
heart rates beyond a very coarse estimation. The coarseness
was primarily due to only having 10 seconds or 300 frames
in each video.

Unfortunately our actual heart rate results were not as
accurate as we had hoped (Figure [8). For several videos, we
generated both the heart rate estimated by the video as well as
the heart rate measured with a pulse oximeter which we took
as ’ground truth’ data. It should be noted that the oximeter
was a $20 one off Amazon and its calibration was unknown.
Also, during most of the videos the oximeter value varied by



=3
=)
S
y
—
A

°
R
.

Estimated intensity

Frequency, bpm

0.016 - \ B
0.014 [ ) ]

0.012 1 " [ I ]

e
4

[ \ | |
[ [ |
0,008 \/ 1A Nalv || R
: ‘\““ ANANRW! | i Ia
‘ [
|

0.006 |

Estimated intensity

0.004 -

0.002 - |

L

0 50 100 150 200 250

Frequency, bpm

Figure 7. Sample generated heart rate+breathing rate signal with noise added
and its power spectrum (A). With the breathing rate bandpassed out (B), it is
still seen that there is significant noise and the dominant frequency is not the
heart rate frequency, which should be 75 bpm.

Table T
CORRELATION COEFFICIENTS FOR ALL VIDEOS AND SEPARATED BY
VIDEO SUBJECT

Video Set | Correlation Coefficient
All 0.13
Matt -0.29
Amanda 0.56

multiple beats per minute (mean 5, median 4.5 bpm). Our
correlation values for both of us together and each invidually
are listed in Table [

Overall we had a slight positive correlation. We did detect
who had the higher heart rate in each video, which is useful
for amplification. Compared to previous studies, our results
are not too surprising - on databases which would be similar
to ours, correlation coefficients ranged from 0.08 to 0.81 in
one study implementing several algorithms [5]. However, with

controlled environments (varying from lighting controls to
head steadiness to breath holding) some of these algorithms
performed with correlation coefficients of 0.98 to 0.99. We
implemented a variation on the algorithm which performed
best in their study, but did not have as successful of results.
We also have a fairly small sample size (8 detections for each
person) due to time constraints.
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Figure 8. Scatterplot of heartrates based off detection in video compared to
measurement with pulse oximeter. Different colors denote different people.

The recordings of Amanda had somewhat better predictive
value than those from Matt (whose recordings actually had
negative correlation coefficient). This probably has to do with
a combination of her heart rate varying more over the course
of the experiments and differences in skin color. We did try to
improve videos by eliminating background variation by using
a plain black background, but this did not really provide any
benefit over using any constant background.

IV. VIDEO MAGNIFICATION

To visualize the effects of changing heart rate, we used
a technique called Eulerian Video Magnification [1l]. This
technique had been used before to amplify heart rate in videos
where the heart rate was already known - the demo video they
have includes a subject where they magnify only a 10 bpm
range. Larger ranges lead to more noise, so we used our heart
rate detection in order to create a more narrow range for each
subvideo where a face was located.

The way this technique works is by taking how much
each pixel has changed in color compared to the original
input pixel and amplifying this with a frequency bounded
amplification. This is Eulerian because it does not attempt
to track individual features, but instead amplifies everything
which comes through a given point in space. By adjusting the
amount of magnification desired as well as the frequencies
chosen, videos can be made which amplify relevant effects.

A drawback of this method is that it is trying to amplify
color changes regardless of their source. When we use high
amounts of magnification this leads to magnifying noise and



compression artifacts making stray colors appear where we did
not intend them to. The magnification was somewhat clearer
on the darker face in each image as it was less obvious when
colors were being added than in the lighter face. Generally
we chose the same magnification amount for each video and
left only the frequency detection to be done automatically,
although future work could included determining the maxi-
mum magnification reasonable before the video would become
visually unpleasant.

After Amplification

Before Amplification

L

Figure 9. Visual representation of video amplification for two subjects. A
column of pixels is taken at each frame and plotted left to right. Fluctuations
can be seen with the human eye after processing.

V. COMBINING THE VIDEOS

After each segment around an individual’s face was ampli-
fied, the video was simply stitched together by replacing the
pixels from the original video with each sub-video. Since each
person remained relatively stationary and the background was
a uniform black, we implemented no blending at the boundary
of each stitched video. The most visible artifacts can be seen
at the neck of each person, where amplified and non-amplified
skin come together.

These effects could be mitigated with more advanced stitch-
ing algorithms such as blurring the edges together or other
methods of blending.

VI. CONCLUSION AND FUTURE WORK

The most difficult part of extracting heartbeats proved to
be discerning the actual signal from other forms of noise. We
suspect other physiological signals present within roughly the
same frequency played a large part in this. Most notably, our
breathing and blinking both fell within these ranges, especially
when aliased. By eliminating potential noise sources, we could

Figure 10. Stitched video frame. Around the lower neck, combination artifacts
are visible. They are also slightly visible on the left hand size of the hair where
the hair was not all in the magnification subvideo.

remedy each accordingly and move to more uncontrolled
situations.

Towards practical applications, more work could be done
to explore the extent to which this could be applied to larger
crowds. Investigating the ability to perform these operations on
a surveillance camera would be of great interest. Specifically,
we would explore how performance drops off with lowering
resolution, or bits of information per pixel. Additional chal-
lenges would be to explore the functionality of algorithms on
partially occluded faces.

Finally, concerning visualization, we feel that other forms
of amplification could be explored. Since the MIT Eulerian
algorithm amplifies both color and displacement variations,
other methods may prove to be more intuitive for conveying
pulse. For instance, changing the coloration or contrast of an
individual’s face could work.
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APPENDIX

A. Videos

Manual heart rate ID (this was taken as a best case scenario
with ground truth heart rates from the oximeter put in): https:
/fwww.youtube.com/watch?v=55-LcodcwGg

Automatic heart rate ID (our experimental results): https:
/Iwww.youtube.com/watch?v=k-CsB41JSZI

B. Work Distribution

Coding was done jointly between partners, with Amanda
leading. The report and poster were written together.
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