
1

Sheet Music Reader
Sevy Harris, Prateek Verma

Department of Electrical Engineering
Stanford University

Stanford, CA
sharris5@stanford.edu, prateekv@stanford.edu

Abstract—The goal of this project was to design an image processing algorithm that scans in sheet music and plays the
music described on the page. Our algorithm takes a digital image of sheet music and segments it by line. For each line,
it detects the note types and locations, and computes the frequency and duration. These frequency and duration pairs
are stored in a matrix and fed into the audio synthesizer, which plays back the music. For simple and non-noisy input
images, the audio output for this algorithm was recognizable and played the pitches accurately, excluding the presence
of accidentals.

F

1 INTRODUCTION

Much like the problem of optical character
recognition, there are many useful applications
for automating the process of reading sheet
music. An optical sheet music reader allows
a musician to manipulate scores with ease.
An algorithm that converts an image to note
frequencies can easily be transposed to other
keys and octaves. Transposing music is a very
tedious process when done by hand. A sheet
music reader also has the potential to quickly
translate handwritten music into a much more
readable digital copy. Musicians can also use
the sheet music reader as a practice aid to
check their own sound with a digital reference
for a passage. For this project, we focused
just on translating the image to audio output.
This algorithm takes a digital image of sheet
music and converts it into audio samples that
are played back to the user. Section 2 reveals
the specific implementation of the algorithm,
and section 3 explains the results we achieved.
The conclusion and future work is detailed in
section 4.

2 IMPLEMENTATION

This image processing algorithm works in three
general steps, shown in Figure 1. First, the
algorithm performs segmentation and several

preprocessing functions to enhance the quality
of the image and make it easier to analyze.
Then, the key objects are detected using mor-
phological operations. In the final stage, the
detected notes and other objects are combined
and analyzed to produce frequency and dura-
tion pairs that are sent to the synthesizer as a
matrix.

2.1 Segmentation and Preprocessing

First the image is binarized using Otsu’s
method because it makes the image cleaner and
the calculations easier. The image is inverted
so that the objects of interest, the notes, have
a high intensity and the background is zero.
Next, the sheet is split into separate lines using
the following method based off the segmenting
algorithm described in [1]. First, the image
is eroded by a horizontal line to emphasize
the staff lines and disregard most everything
else in the calculation. The horizontal rows
are summed into a column vector normalized
by the width of the image. These row pro-
jections are binarized using Otsu’s method to
find the lines that are most likely staff lines.
Next, the complement of this vector is eroded
with vertical lines of variable length to find the
regions with lots of blank rows. The divisions
are drawn roughly in the middle of the blank



2

Fig. 1. Shows the flow of the image processing
algorithm.

spaces so that high notes and low notes are
still included in the segmented image. Figure 2
shows the sum of the rows after image erosion
with the calculated dividing lines drawn in red.
It also shows the corresponding image with the
divisions drawn in.

Once the image is segmented into different
lines, the next step is to identify the individual
staff lines. These positions are used later for
identifying the key signature and calculating
the note frequency. The staff lines for each line
of music are found by summing the rows and
finding the 5 equally spaced rows that maxi-
mize the sum. These rows are then subtracted
from the image. The results of finding and
erasing the staff lines are shown in Figure 3.

The staff line locations and images without
the staff lines are then passed on to the next
part of the algorithm for note detection.

2.2 Object Detection

The objects of interest (notes, key signatures,
rests, etc...) were detected in the second stage
using several different morphological opera-
tions important elements of the image, mainly

Fig. 2. Shows the row sums of a page of sheet
music (top) after erosion and the corresponding
image (bottom) with the dividers drawn in.

Fig. 3. Shows the detected staff lines highlighted
in red (top) and then removed from the image.
row sums of a page of sheet music (top) after
erosion and the corresponding image (bottom)
with the dividers drawn in.

the notes, the clef, and key signature are de-
tected at this stage.

2.2.1 Clef Detection

Identifying the clef of the music (treble or bass
for this application) is simplified by the fact



3

that the clef is always the first object drawn
on the left side of the staff. The left edge of the
staff is found by looking at sums of the vertical
columns for the first major peak in activity.
The end of the clef is found by looking at the
vertical sums for the first transition below the
median. Bass clef differs from treble clef in that
it has almost no pixels between the bottom two
staff lines, so we sum the pixels in this area,
normalize by the spacing between staff lines,
and then threshold to get the classification.

2.2.2 Key Signature Identification
The left boundary of the key signature was
found in a similar manner to the boundary of
the clef. The vertical sums of pixels were taken
and then the boundaries were determined to
be the major transitions in intensity levels. The
right boundary was taken as a fixed width
guaranteed to at least contain the whole key
signature.

First, the algorithm detects the sharps by
eroding with a vertical line and applying sev-
eral filters on the resulting connected compo-
nents. The algorithm looks for pairs of con-
nected components that are thin, close together,
and similar in height and vertical offset. An
example of this culling is shown below in
Figure 4.

Fig. 4. Shows the process of identifying sharps
in a key signature. The original image (left) is
eroded and then dilated with a vertical line (mid-
dle) and then extra filters based on the shape
are applied (right).

If no sharps are detected, the algorithm looks
for flats by eroding with a small disk shaped
structuring element. The algorithm then counts
the number of sharps or flats detected and
uses the known key signature conventions (the
order of sharps or flats must follow certain

rules) to determine how many accidentals are
a valid part of the key signature.

2.2.3 Quarter and Eighth Note Detection
Quarter and eighth notes were grouped to-
gether for detection because they both have
filled black circles. These notes were detected
by eroding and dilating by a disk shaped
structuring element that was normalized to the
space between the staff lines. The resulting con-
nected components were then thresholded by
eccentricity (not too circular or too linear) and
area (must meet a minimum area requirement).
If the variance in the area of the remaining
connected components was large enough, com-
ponents more than 1.75 standard deviations
below the median area were removed. An ex-
ample of this process is shown in Figure 5.

Fig. 5. Shows the process of detecting quarter
and eighth notes. The original image (top) is
eroded and then dilated with a small disk (mid-
dle) and then the connected components are
thresholded by eccentricity and area (bottom).

2.2.4 Whole Note and Half Note Detection
The algorithm for detecting whole notes and
half notes is very similar to the method used
to detect quarter notes and eighth notes. The
key idea is to fill up the holes in an image
and then subtract this from the original image
in order to get the image which has non-filled
notes present.



4

There exist many methods for filling up re-
gions based on connectivity mapping, closed
regions etc. We use the watershed algorithm [2]
in order to detect these closed regions. How-
ever the main drawback is that the staff lines
form closed regions without removal which
result in filling up the entire regions. Thus we
use a preprocessing step to remove the staff
lines. This, however opens up the connected
regions which are otherwise difficult to fill and
detect.

The approach we use is as follows: We first
dilate the image with a structuring element
proportional to a fixed ratio of the size of the
width of the staff. After dilating the image,
the gaps due to removal of staff lines are re-
moved, however the original size of the image
is increased. This image is then used to fill
up all the closed regions using the watershed
algorithm. Once we have an image containing
the filled up regions, we subtract the original
undilated image in order to obtain an image
which has dots present only where there were
initially whole notes present. The algorithm for
dot detection is used in previous step in order
to detect the position of the whole notes.

An example of whole and half note detection
is shown in Figure 6.

2.2.5 Detecting Dotted Notes
For accidentals we have detected only the dots
which are used to tell us about the changes in
the timing of the note. This is a difficult task
as there may occur spurious regions occurring
due to errors in binarization, removal of staff
lines etc. The method for dotted note detection
is as follows. We first segment the image into
each of the individual staffs. The vertical lines
and the horizontal lines are removed to give
a decomposed image consisting of only the
accidental, whole and solid notes as well as the
flags. This image is used as an input in order to
detect the accidental notes. The characteristics
that separate these dots from other symbols are
the eccentricity and the size. The dots have a
high value of eccentricity which we enhance
further by dilating the image. The dilated im-
age is first used to find all the connected re-
gions using a 4-neighborhood connected def-
inition. After finding all the connected re-

Fig. 6. Shows the process of detecting half and
whole notes. The original image (top) has the
holes filled (middle) and then uses erosion and
thresholding to detect the notes (bottom).

gions, these regions are then thresholded by the
length of the connected region. The accidental
dots will have size smaller than the staff width.
Then on all the connected regions separated by
connectivity, they are separated by eccentricity
to yield the desired dots.

2.2.6 Detecting Rests
Many of the rests are rectangular elements that
are present in an image. In order to detect
these, we take our input as the horizontal and
vertical line removed image. The property that
we use of the pauses is the fact that the pause
elements will have zero variance when we sum
up the pixels along the vertical axis in the
negative binary image. All other elements have
non zero variance due to changes in the width,
length etc.

2.3 Audio Synthesis
Once the whole notes, quarter notes, and half
notes are identified, the next step is to identify
the note location and get the frequency of the
corresponding notes.

We use an additive synthesis algorithm [3]
instead of storing the recorded samples. This



5

has many advantages i.e. we can have flex-
ibility of changing the tempo of the output,
reference frequency as well as the flexibility
of playing multiple instruments with a fixed
number of small parameters. For real time
applications, it may be faster to synthesis a
sample rather than retrieve it from memory.
The parameters we use in this are the envelop
of the instrument as well as the temporal en-
velop of the volume dynamics. These give a
sense of naturalness to the sound. We have
not considered the temporal evolution of the
timbral coefficients.

3 RESULTS

We tested our algorithm on five simple pieces
of music. While none of them was executed
perfectly at the output of the synthesizer, all of
them were easily recognizable. The algorithm
successfully segmented and identified the key
signature for every line of the five pieces we
used for testing. The accuracy of the algorithm
was measured by generating images that al-
lowed us to visually inspect the notes that were
detected. Two examples of these comparison
images are shown below in Figure 7.

Fig. 7. Shows the original image and the types
of notes detected.

The table in Figure 8 summarizes the error
rate of the algorithm when detecting quarter
notes, eighth notes, and whole or half notes.
Whole and half notes were combined because
the algorithm does not yet distinguish between
the two. The error rate is calculated as the total

number of insertions, deletions, and substitu-
tions for a piece divided by the total number
of notes.

Fig. 8. Shows the accuracy of the algorithm for
each song.

We found that the algorithm rarely makes
mistakes on quarter notes, but regularly substi-
tutes quarter notes for eighth notes and misses
whole and half notes. This is usually due to
the presence of a staff line in the middle of
the whole note, which makes the hole filling
method less effective. The result is that the
algorithm tends to have inaccurate rhythm, but
plays the correct pitches for all notes detected
(excluding notes with accidentals).

4 CONCLUSION AND FUTURE WORK
For simple and non-noisy images, this im-
age processing algorithm can transform digital
sheet music into recognizable audio output, but
there is still much room for improvement.

This algorithm is largely missing the han-
dling of accidentals that are not described in
the key signature at the beginning of each
line. This significantly increases the number of
wrong notes as the complexity of the piece
increases. Additionally, this algorithm does not
yet distinguish between whole notes and half
notes. This can be accomplished through the
detection of note stems and the calculation of
proximity to non-filled notes.

On top of the improvements that can be
made in robustness, there are dozens of musical
symbols that are not even mentioned in this al-
gorithm, such as the dynamics markings, time



6

signatures, triplet groupings, and accents. This
makes optical music sheet reading a practically
limitless problem. There is great room for im-
provement in robustness and functionality, but
this algorithm provides the initial end to end
framework for an optical sheet music reader.

REFERENCES

[1] Bellini, Pierfrancesco, Ivan Bruno, and Paolo Nesi. ”Optical
music sheet segmentation.” Web Delivering of Music, 2001.
Proceedings. First International Conference on. IEEE, 2001.

[2] Bieniek, Andreas, and Alina Moga. ”An efficient watershed
algorithm based on connected components.” Pattern
Recognition 33.6 (2000): 907-916.

[3] Horner, Andrew, and James Beauchamp. ”Piecewise-linear
approximation of additive synthesis envelopes: a compar-
ison of various methods.” Computer Music Journal (1996):
72-95.



Appendix(A:(Work(Breakdown(
(
Sevy:!
Segmentation!and!Preprocessing!
Clef!Detection!
Key!Signature!Identification!
Quarter!and!Eighth!note!detection!
Detecting!Solid!Notes!
!
Prateek:!
Rests!
Whole!notes!
Dotted!notes!
Synthesis!


