EE369C Fall 2020-21 1
Medical Image Reconstruction

EE369C: Assignment 6
Due Thursday Nov. 5

Projects, Homework, and the Remainder of the Course There are three more homework as-
signments including this one. You can either choose to do these, or you can do a project of your
choice that has something to do with reconstruction. For the projects you will give a short presen-
tation during the last week of class. Send me an email if you are planning on the project option.
We can set up a zoom call to talk about it if you’d like.

Compressed Sensing In this assignment we will explore some of the basic elements of Com-
pressed Sensing: Sparsity, Incoherency and the Sparsity based reconstruction. This assignment
was put together by Miki Lustig for this class.

1. Sparse Signals and Denoising To get an inuition, let’s first explore the world of sparse 1D
signals.

a) Sparse Signals Before we start with compressed sensing, we’ll look at sparse signal de-
noising. There’s a strong connection between CS and denoising. Here will attempt to denoise a
sparse signal that is corrupted by random noise.

Generate a 1x128 vector, z, with 5 non-zero ([1:5]/5) coefficients and permute them randomly,

>> x = [[1:5]/5 zeros(1,128-5)];
>> x = x(randperm(128));

Add random gaussian noise with standard deviation o = 0.05 to the signal, y = z +n
>> vy = x + 0.05%randn(1,128)

Many approaches for denoising and regularization use the Tychonov penalty to estimate the
signal from noisy data. Specifically, they try to solve:

o1 1, .
argmin 2 || — |3 + A 14l

This optimization trades the norm of the solution with data consistency. The nice thing about this
approach that it has a closed form solution, and finding the minimum is a linear problem. Show

that the solution for this problem is
1

1+ 27
Observe what happens when we plot the result for A = {0.01, 0.05, 0.1, 0.2}, and include the plot
for A = 0.1 in your report. Is the solution sparse?

T =

b) Sparse Signals and the /! Norm Instead of Tychonov regularization, which penalizes the

72 norm (||z||2 = /Y 22), we will use the an ¢! norm (||z1|| = 3 |z;|) penalized solution. Specifi-
cally we will solve:

1 .
argmin 2 12— |[* + A1l

It turns out that this is very easy to solve. Because the variables z;’s are independent we can
minimize each of them seperately by solving argmin £|#; — y;|? + A|;|. The solution to each 7; has
a closed form. Show that the solution is

y+ A if y<—A
0 if Jyl<A
y—A if y>A

=
I

(Hint: look at the solutions for y >> A, y << —A and |y| <). Write a function SoftThresh that
accepts y and A and returns 2. Plot it for y € [—10, 10] and A = 2. The effect of this function is often
referred to as soft-thresholding or shrinkage. Describe what happens when y is small compared
to A\, and when y is large.

Apply softThresh to the noisy signal with A = {0.01,0.05,0.1, 0.2}, and include the plot for
A = 0.1 with your report. Is the solution sparse?

¢) Random Frequency Domain Sampling and Aliasing As we mentioned before, there is a
strong connection between compressed sensing and denoising. We’ll now explore this connection
and the importance of incoherent sampling.

First, let’s set up the undersampled data. To do so, compute the centered Fourier transform of
the sparse signal, X = F'z where F is a Fourier transform operator,

>> X = fftc(x);

In compressed sensing, we undersample the measurements. We measure a subset of k-space, X,, =
F,x where F, is a Fourier transform evaluated only at a subset of frequency domain samples. This
is an underdetermined data set for which there is an infinite number of possible signals. However,
we do know that the original signal is sparse, so there is hope we will be able to reconstruct it.

The theory of compressed sensing suggests random undersampling. To see why, we will look
at equispaced undersampling and compare it to random undersampling. Undersample k-space
by taking 32 equispaced samples. Compute the inverse Fourier transform, filling the missing data
with zeroes, and multiply by 4 to correct for the fact that we have only 1/4 the samples,

>> Xu = zeros(1l,128);
>> Xu(l:4:128) = X(1:4:128);
>> xu = i1fftc(Xu) +4;

This is the minimum #? norm solution (why?). Plot the absolute value of the result. Describe what
you see. Will we be able to reconstruct the original signal from the result?

Now, undersample k-space by taking 32 samples at random. Compute the zero-filled inverse
Fourier transform and multiply by 4 again,

>> Xr = zeros(1,128);
>> prm = randperm(128);
>> Xr(prm(1:32)) = X(prm(1l:32));

>> xr = i1fftc(Xr)«4;

Plot the absolute value, and describe the result. Will we be able to reconstruct the signal from the
result? How does this resemble the denoising problem?

This is the important part, so say it out loud: By random undersampling, we’ve turned the
ill-conditioned problem into a sparse signal denoising problem. However, the “noise” is not
really noise, but incoherent aliasing that is contributed by the signal itself. Therefore, we might be
able EXACTLY recover the sparse signal.

d) Reconstruction from Randomly Sampled Frequency Domain Data Inspired by the de-
noising example, we will add an ¢! penalty and solve,

1 . .
argmin 3|, — I3 + Ml

In this case, is the estimated signal, F}, 7 is the undersampled Fourier transform of the estimate,
and y are the samples of the Fourier transform that we have acquired. Now the variables are
coupled through the Fourier transform, and there is no closed-form solution. Therefore we will
solve it iteratively applying soft-thresholding and constraining data consistency. If X = Fi, we
initially set X = y, and implement the following iteration

1. Compute the inverse Fourier transform to get an estimate of the signal 7; = F*X;
2. Apply SoftThresh #; = S(z;, A) in the signal domain
3. Compute the Fourier transform X, = F#;

4. Enforce data consistency in the frequency domain

N q XZ[] ify[j] =0
Xiv1l] —{ y[ﬁ ot}z;/ejrwise

5. Repeat until ||Z;11 — Z;|| < €

This is a Projection Over Convex Sets (POCS) type algorithm. Apply the algorithm (at least 300
iterations) to the undersampled signal with A = {0.01,0.05,0.1} and plot the results.

To implement this in matlab, assume that the randomly sampled Fourier data is Y, with zeros
for the non-acquired data. First initialize the estimate of the Fourier transform of the signal to be
X = Y. The core of the iteration can then be written as

>> x = ifftc(X);

>> xst = SofthThresh (x, lambda) ;
>> X = fftc(xst);

>> X = X.x(Y==0) + Y;

You can do this in one line if you want. Note that you will need to modify Soft Thresh to handle

complex signals
Sl 0 if [z < A
(2,2) = 7(|I|ZA)x if |z| > A

Make a plot of error between the true = and #; as a function of the iteration number, plotting the
result for each of the As. It is really cool to see the evolution of the intermediate result. To plot the
signal at each iteration use drawnow after the plot command.

Now, repeat the iterative reconstruction for the equispaced undersampled signal. What’s wrong?

2. Sparsity of Medical Images Except for angiograms, most medical images are are generally not
sparse (actually angiograms are also not that sparse, but that’s another story). However, medical
images can have a sparser representation in a transform domain, such as the wavelet domain.
Download Wavelet.tar.gz from the class website. Untar it to your working directory. Once
extracted, a directory named @Wavelet will be created. This is a class (much like in C++) that

implements the Wavelet transform. It uses functions from WaveLab written by David Donoho
(http://www-stat.stanford.edu/~wavelab/). The implementation as a class allows over-
loading of operators and makes it easy to use. Here’s an example how to compute a Daubechies
wavelet transform of an image and reconstruct it again:

>> W = Wavelet; % defines a wavelet operator

>> im = phantom(256); % Shep-Logan CT Phantom

>> im W = Wxim; % computes the wavelet transform

>> im_rec = W' xim_W; % computes the inverse wavelet transform

>> figure, subplot(l,3,1), imshow(im, []), title(’phantom image’);

>> subplot (1,3,2), imshow(abs(im W), [0,1]), title(’The Wavelet coefficients’);
>> subplot (1,3,3), imshow(abs(im_rec),[]), title(’'The reconstructed image’);

We will now evaluate the sparse approximation of a very pretty axial 7 weighted FSE image.
Download brain.mat from the class website, and load it into matlab. The image matrix is im.
Compute the Wavelet transform of the image. Plot the image of the wavelet transform coefficients
using the function imshowWAV . m from the class website. Wavelet coefficients represent both space
and spatial frequency information. Each band of wavelet coefficients represent a scale (frequency
band) of the image. The location of the wavelet coefficient within the band represent its location
in space. What you see are edges of the image at different resolutions and directions.

Threshold the wavelet coefficients retaining only the largest 20% of the coefficients. You can
threshold im_W for the largest faction £ of the coefficients with

>> m = sort (abs(im_W(:)), " descend’);

>> ndx = floor(length(m)«f);

>> thresh = m(ndx);

>> im_W_th = im W .x (abs(im_W) > thr);

Plot the masked wavelet coefficients. What has been thresholded?

Reconstruct the image and display it in your report. Compare it to the original image qualita-
tively and by computing the difference image. What has been removed? Examine the results when
you retain the largest 12.5%, 10%, 5% and 2.5% of the coefficients (don’t include this in your re-
port). What, in your opinion, is the sparsity of the image? Provide a reconstruction and difference
image to support your argument.

The wavelet transform sparsifies the brain image, and concentrates the “important” image
energy into a subset of the coefficients. This helps us denoise the image by thresholding the coef-
ticients which contain mostly noise!

3) Compressed Sensing Reconsruction We’ll now explore a 2D compressed sensing reconstruc-
tion from undersampled data. Load the file brain.mat into matlab again.

a) Non-Uniform Random Sampling Animportant aspect of random frequency-domain sam-
pling is matching the power spectrum of the image. If the energy is concentrated in lower spatial
frequencies, more samples should be allocated there. We constructed two random 3-fold under-
sampling patterns for you. The random patterns are in the variables mask_unif and mask_vardens
were drawn from probability distribution functions (PDF) given by the variables: pdf_unif and
pdf_vardens respectively.

Compute the 2D Fourier transform of the image. Multiply by the uniform mask, divide by the
appropriate PDF, and compute the zero-filled Fourier transform.

>> M = fft2c (im);
>> Mu = (M.*mask_unif) ./pdf_unif;
>> imu = ifft2c (Mu);

Display the image and the difference image compared to original image. Is the aliasing white
random noise? Repeat for the variable density mask. What happened now? Both use a similar
number of samples, but which gives you a better reconstruction?

b) Reconstruction from Random Sampled k-Space Data Implement the POCS algorithm
described earlier for 2D images. Add another step of computing the wavelet transform before the
soft-thresholding and the inverse wavelet transform after the soft-thresholding.

Reconstruct the images from the uniform and variable density undersampled data. First get
an idea of reasonable values of A by examining what would be thresholded. You can do this using

>> imuW = Wximu;
>> imshow (abs (imuW) >lambda, []1);

since imshowWav scales different wavelet scales differently. You want a significant number of
coefficients to be below)\, but not all of them.

Start with the variable density data, and experiment with several values of A. You should only
need about 20 iterations, but start with fewer while you convince yourself it is working! Compare
the result after soft-thresholding to a zero-filled density compensated reconstruction, the original
image, and a the original image soft-thresholded. As an initial image to the POCS, use a zero-filled
density compensated reconstruction, it will converge faster. Show the image, and the difference
image for the A you find the most effective.

Then try the uniform density data. Run for at least 50-100 iterations, since this converges
slowly. If you want to speed up the convergence, start with a relatively large A so that the recon
will converge rapidly. Then, decrease A using the previous recon as an initial image. For example,
you might divide lambda by two every 10 or 20 iterations. Show the image, and the difference
image for the A (or the final) if you use a sequence) that you find the most effective. Don’t spend
too much time on this, the point should be clear by now.

I hope you enjoyed this exercise — Miki.

