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EE369C Fall 2020-21
Medical Image Reconstruction

Assignment 7
Due Nov. 19

Assignments, and the Class This will be the last assignment for the class. If you do a project,
you can skip assignment 6 and 7. Note that the due date is in two weeks, which is the last day of
class.

Projection Reconstruction for CT For this assignment we will reconstruct fan beam data ac-
quired from a commercial CT system. The data is from Sarah Patch when she worked at the GE
Global Research Center (she is now a Prof. of Physics at Marquette Univ.). It was acquired on a
multi-detector system.

We will do this with a rebinning reconstruction. In order to do this we will need a parallel
beam back projection algorithm, which we will do first.

1) Parallel Beam Backprojection We will start with parallel beam back projection, and simulated
parallel beam data of the famous Shepp-Logan phantom. The phantom and the sinogram data
look like this

The data is in the matlab file sl_phantom.mat, and has the variables slp which is an image of
the phantom, and pd with is the projection data. The projections are the columns of the matrix
(the transpose is shown above). There are 256 samples per projection and 402 projections over 180
degrees.

To reconstruct the projection data you need to first rho filter each column, and then backproject
the result. Write a matlab function for rho filtering. Then use the back_projection.m function
from the web site to do the back projection. The image should look pretty close to the image above.

Include the reconstructed image, and also a reconstruction without doing the rho filter.

2) Display the Fan Beam Sinogram Next we will look at the fan beam data. There are 888
samples (detectors) over an arc of about 55◦. A total of 984 projections are acquired over a full
2π rotation. The data is in the matlab file fan_beam_data.mat available on the web site via the
link. The data is the variable d. The fan angle in radians is in the variable fan_angle.

The data is quite pretty. Make an image of the sinogram, and include it. You may have to
adjust the window to make it show up well.
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3) Parallel Beam Reconstruction of the Fan Beam Data Before we get to the fan beam algorithm,
it is interesting to try the parallel beam reconstruction directly.

First rho filter the sinogram, and display the data, again windowing down so that you can see
most of the data (there are a few bright areas that will be clipped). Note that the SNR is noticeably
worse in some areas than others. Compare the low SNR areas to the sinogram you plotted above.
Why is the SNR lower in these areas?

Next, backproject the rho filtered data. Since we have 2π of projection angles, choose any inter-
val of π, and perform the backprojection. The data will support a reconstruction of 512 samples.
Display the result. You should be able to tell there is something in the data, but it won’t be pretty.

4) Rebinning Next is the rebinning operation. What we will do is compute a new parallel pro-
jection data set for each θ that we have. In this case we have about six γ samples for each θ. First,
define

>> [nsamples nprojections] = size(d);
>> dtheta = 2*pi/nprojections;
>> dgamma = fan_angle/nsamples;

For each projection angle θ we will go through the fan beam data to produce a parallel projection.
The projection angle θp for the nth fan beam set and the mth ray is

θp = n∆θ +m∆γ

where we assume m goes from -nsamples/2+1 to nsamples/2. Recall from the notes that the
rebinning operation essentially resamples the fan beam sinogram along diagonal lines. This is the
equation of that diagonal line. The first term is the constant offset for a parallel projection we are
creating, and the second term is the linear offset with fan angle.

To calculate the linear offset, consider the projection at angle θp = 0. Then

n∆θ = −m∆γ

n = −∆γ

∆θ
m

We can then use this to compute any parallel projection by adding the projection angle constant
offset. If we define ndth for m, the parallel projection data for a sample ns and parallel projection
np is given by

>> dp(ns,np) = d(ns,np+ndth(ns));

where ndth should be rounded to an integer to keep matlab from complaining. The sinogram
extends over 2π, so you need to take care of the end cases, where the index will wrap around (use
the modulo function mod()). This is essentially a nearest neighbor interpolation.

Show the rebinned sinogram. It should look similar to the sinogram above. The main differ-
ence is that the trace of particular bright objects now look like sinusoids, before they were distorted
depending on where they were in the field of view.

Make sure you check for discontinuities or gaps. This will help you debug your code.

5) Backprojection There is one more correction we should do, the correction for the non-uniform
spacing of the parallel projections, but we’ll put that off for a moment.

Use your parallel beam backprojection algorithm to reconstruct the rebinned data. Again, use
any set of π projections. Show the reconstruction. This should look pretty nice.



3

6) Sample Density Correction Finally, we should correct the rebinned parallel beam data for the
non-uniform beam spacing. This is a fairly small effect for this data, but it still helps.

The fan-beam rays are at
mf = sin(m∆γ)/(∆γ).

measured in beam widths, and m=[-ns/2:ns/2-1]. If mx = max(abs(mf)), what we want is
to resample the data uniformly over the range [-mx:(mx-1)], where the -1 is to make the num-
ber of samples even. Use the matlab routine interp1() to do the resampling. For a projection
dp(:,jj) the corrected data dc(:,jj) is

>> dc(:,jj) = interp1(mf,dp(:,jj),[-mx:(mx-1)]);

By default, interp1() uses linear interpolation, which is probably good enough here. Note that
the number of samples in the corrected projections will be smaller that what you started with.

Reconstruct the result, and compare to your previous reconstruction. There should be fewer
artifacts, and the resolution and definition of structures towards the edge of the FOV should be
better.


