Today

Course Overview

EE 469 B

Assignment

Projects due next Friday
Main Ideas from the Course

Interpolation

One Sample Geometry to Another

Non-Cartesian Samples \Rightarrow Cartesian Grid

Non-Uniform Samples \Rightarrow Uniform Samples

Filling in Missing Data: GRAPPA, SPIRIT
PARTICULARLY IMPORTANT PROBLEM

INTERPOLATION FOLLOWED BY A TRANSFORM

NON-UNIFORM DATA IN SPATIAL FREQUENCY

UNIFORM DATA IN IMAGE SPACE

GRIDDING (DENSITY CORRECTION)

UNIFORM DATA IN IMAGE SPACE

NON-UNIFORM DATA IN SPATIAL FREQUENCY

INVERSE GRIDDING (NO DENSITY CORRECTION)
System Models

All of the problems we looked at could be modeled as a matrix equation

\[y = A x \]

\(A \) is called the "projection operator" in PET essentially a PET system simulator

In MRI it was called the encoding matrix:

\[E = \begin{pmatrix}
 1 & \cdots & 1
\end{pmatrix}
\]

Each column is complex exponential produced by one voxel

For parallel MRI, coil weighting also included

For MRI, applying \(A \) (or \(E \)) is inverse gridding
Another important operator

\[\hat{x} = A^* y \]

Adjoint operator, takes data and does some sort of reconstruction.

In PET, CT this is "Backprojection operator."

In MRI this is gridding (without density compensation).

In practice, \(A \) and \(A^* \) can't be computed and stored.

Instead, implemented as functions (m-files), contain

- Interpolations
- Transforms
- Integrations
- Convolutions
- Multiplications

All simple, fast operations.
Given

\[y = Ax \]

where \(y \) is known, and \(A \) (and \(A^* \)) are functions.

How do we solve for \(x \)?

Apply \(A^* \) to both sides:

\[(A^* A) x = A^* y \]

Simple Reconstruction

And solve for \(x \).

Many Special Cases

2DFT in MRI

In this case, \(A \) is Fourier Transform matrix and

\[(A^* A) x = A^* y \]

\[\text{Inverse FT} \]

\[x = A^* y \]
Non-Cartesian M R I

In this case we choose to solve a different problem

\[W y = W A x \]

\(W \) is a diagonal weighting, or preconditioning matrix, then

\[A^* W y = (A^* W A) x \]

\[\underbrace{(A^* W A)}_{I \text{ image}} \uparrow \quad \text{e space} \]

Choose \(W \) so that \(A^* W A = I \)

\[x = A^* W y \]

\[\uparrow \quad \text{original density compensation} \]

This is same as weighted least squares reconstruction
Cartesian Sense MRI

Here A^*A has a special structure (after reordering).

$X = A^*y$

Im: MAE (data), AC: biased (reconstruction)

For acceleration R, each block is $R \times R$

Solve each subequation explicitly

$$x = (A^*A)^{-1} A^* y$$
Non-Cartesian Parallel MRI

Here there is no special structure to exploit iteratively solve

\[(A^*A)x = A^*y\]

Using conjugate gradient algorithm, or something else. MATLAB LSQR does this. You provide functions that implement \(A, A^*\).

You can add preconditioning (density compensation)

\[(A^*WA)x = A^*Wy\]

But you don't need to.

Same approach works for SPIRiT, PRUNO, lots of others.
PET here

\[y = Ax \]

Event Source Distribution

\(A \) is a PET simulation, \(A^* \) is backprojection

Statistics of \(y \) are Poisson

Iterative solution that maximizes likelihood (ML-EM)

Projection and backprojection of PET

L18
All the same ideas, new applications

Non-Cartesian MRI \Rightarrow Multidimensional RF pulses

Spiral k-space trajectory $+$ RF

Parallel MRI \Rightarrow Parallel transmit

Take any pulse sequence and reverse it
Use density compensation as RF
Use RF as density compensation
This will do something useful
ADDED BONUS

Many of the problems are non-linear (rotations) but have explicit solutions!