GRIDDING KERNEL DESIGN AND OVERSAMPLING

ASSIGNMENT 2
READ BEATTY PAPER

LAST TIME
GRIDDING
DENSITY COMPENSATION

THIS TIME
KERNEL DESIGN
OVERSAMPLING RATIO
KERNEL SAMPLING
Problem with 1x Grid

2x Grid

No Transition Band

Aliased Signal Becomes Regularized Signal

Sample twice as finely in k-space.

Spatial replicas twice as far out.

Many kernels work.

What should we choose?
RECT KERNEL

\[C(k_x) = \text{rect}(\frac{k_x}{2\Delta k}) \]

EASY TO COMPUTE

NEAREST NEIGHBOR, ONLY HITS ONE GRID POINT

IN IMAGE SPACE

\[C(k) = \frac{1}{F(V_k)} \sin c\left(\frac{k}{F(V_k)}\right) \]

WE ARE GOING TO DE-APOXIZE, SO WHAT WE CARE ABOUT IS RATIO OF MAINLOBE TO SIDELOBE

VOLUME AT BAND EDGE

MAIN LOBE

\[\sin c\left(\frac{\frac{1}{2}}{\frac{1}{2}}\right) = \frac{\sin\left(\frac{\pi}{4}\right)}{\frac{\pi}{4}} = \frac{\pi}{4} \approx 0.64 \]

SIDE LOBES

\[|\sin c\left(\frac{\frac{3}{2}}{\frac{1}{2}}\right)| = \left|\frac{\sin\left(\frac{3\pi}{8}\right)}{\frac{3\pi}{8}}\right| = \frac{3\pi}{8} \approx 0.71 \]

RATIO IS \(\frac{1}{3} \) NOT GOOD

HIGHER OVER-Sampling CAN BE AS GOOD AS YOU LIKE!
TRIANGLE KERNEL

\[C(k_x) = \text{tanh} \left(\frac{k_x}{\Delta k_x} \right) \]

EASY TO COMPUTE (DISTANCE)
LINEAR INTERPOLATION IN K-SPACE
DATA HITS FOUR GRID POINTS, BILINEAR INTERPOLATION IN IMAGE SPACE

\[c(x) = \frac{1}{ \text{FOV}_x } \sin^2 \left(\frac{k}{ \text{FOV}_x } \right) \]

MAIN LOBE AT BAND EDGE
\[\sin^2 \left(\frac{k}{\pi} \right) = \left(\frac{2}{\pi} \right)^2 \approx 0.41 \]

SIDE LOBE AT BAND EDGE
\[\sin^2 \left(\frac{2k}{3\pi} \right) = \left(\frac{2}{3\pi} \right)^2 \approx 0.045 \]

RATIO IS \[\frac{1}{9} \]
THIS IS OFTEN GOOD ENOUGH!
WE CAN DO MUCH BETTER
Window Function Kernels

Many smooth lowpass functions

Window Functions

Here, Kaiser-Bessel window

\[f(k) = \frac{1}{k_0} I_0 \left(\beta \sqrt{1 - \left(\frac{k}{k_0} \right)^2} \right) \]

Where

\[\beta - \text{shape parameter} \]

\[k_0 - \text{width in spatial frequency} \]

\[I_0(\cdot) - \text{zero order modified Bessel function of the first kind (built into MATLAB)} \]

How do we choose \(\beta, k_0 \)?

For 2x case, analyzed by Jackson, et al.

Given \(k_0 \), provides \(\beta \) to minimize aliasing.
EXAMPLE

4 SAMPLE 1-3 KERNEL

From Jackson, \(\beta = 9 \)

Same computation as \(\text{tri}(\cdot) \)

Main lobe at band edge

\(\approx 0.5 \)

1st side lobe at band edge

\(\approx 0.5 \times 10^{-3} \)

Ratio is \(\frac{1}{10^3} \)

Much better than required for \(\mu_{1/2} \).
REDUCED OVERSAMPLING RATIO

WITH 2x GRID, A 4 SAMPLE KERNEL GIVES AN ALMOST PERFECT RECON.

HOW MUCH CAN I REDUCE THE OVERSAMPLING, AND STILL HIT A SPECIFIC ALIASING LEVEL?

A LOT

NEEDS FPTW TO MAKE SENSE

OPTIMUM KB KERNEL

GIVEN A KERNEL WIDTH \(W \) IN OVERSAMPLED GRID UNITS

\[
\frac{W}{4}
\]

AND AN OVERSAMPLING FACTOR \(L \), FIND \(\beta \) TO MINIMIZE ALIASING
Solution 1 (Water, Iswurm 1999)

![Diagram of solution 1]

Put zero of \(c(x) \) at band edge:

\[
\beta = \pi \sqrt{\frac{u}{\alpha} (\alpha - \frac{1}{2})^2 - 0.8}
\]

Solution 2 (Bizzati)

![Diagram of solution 2]

Put zero inside FOV:

\[
\beta = \pi \sqrt{\frac{u}{\alpha} (\alpha - \frac{1}{2})^2 - 0.8}
\]

Much better as \(\alpha \to 1 \)
W vs \(\beta \)

\(\beta \) is a strong function of \(\omega = w \)

All kernels similar with respect to \(\Delta x \)

As \(W \) increases, \(C(\beta, \omega) \) gets smoother

\(W \) and \(\omega \) vs Aliasing

For a given aliasing amplitude, what \(W \) and \(\omega \) should I choose?

Fig 3 in Beatty Paper

\(0.1 \times W \) ALIASING

\(\omega = 1.125 \), \(W = 8 \)

\(\omega = 1.25 \), \(W = 6 \)

\(\omega = 2 \), \(W = 4 \)
KERNEL SAMPLING

KERNEL IS RECOMPUTED MANY TIMES DOMINATES COMPUTATION

HOW CAN I PRECOMPUTE KERNEL

COMPUTE AT S SAMPLES PER POINT

N NEAREST NEIGHBOUR LOOK UP

N LINEAR INTERPOLATION

SURPRISINGLY HUGE DIFFERENCE

NEAREST NEIGHBOUR

$$\max(\varepsilon_i) = \frac{0.91}{\alpha S}$$

$\text{LINEAR INTERPOLATION}$

$$\max(\varepsilon_i) = \frac{0.37}{(\alpha S)^2}$$

α - OVERSAMPLING RATIO

S - KERNEL OVERSAMPLING

ε_i - AVERAGE ERROR OVER $120V$

EXAMPLE

$S = 10^4$, ASSUME $\alpha = 1.25$, $W = 6$ (AVERAGE AMPLITUDE 0.1×10^{-5})

NEAREST NEIGHBOUR

$S = 7280$ \hspace{1cm} $WS = (7280)(6) = 43,680$ SAMPLES

LINEAR

$S = 49$ \hspace{1cm} $WS = 6(49) = 294$ SAMPLES

IMPORTANT BECAUSE MEMORY MORE IMPORTANT THAN COMPUTATION OFTEN.