Lecture 2: Introduction to Bitcoin

EE 374
April 2, 2025

Agenda

» Reading: Nakamoto’s Bitcoin whitepaper

» Today's goals:

» Two problems Bitcoin solved:
» Data Integrity — application layer
» Data agreement — consensus layer
+ Two cryptographic primitives to solve them:
» Digital signatures

+» Cryptographic hash functions

P2p

foundation

The Foundation for Peer to Peer Alternatives

Main My Page Members Videos Forum Groups Blogs Chat

All Discussions My Discussions 4+ Add Wel
elcome to
)))) P2P Foundation
Bitcoin open source |mPIementat|on of P2P currency Sign Up
Posted by Satoshi Nakamoto on February 11, 2009 at 22:27 or Sign In
A View Discussions

I've developed a new open source P2P e-cash system called Bitcoin. It's completely decentralized, with no central
server or trusted parties, because everything is based on crypto proof instead of trust. Give it a try, or take a look at
the screenshots and design paper:

Download Bitcoin v0.1 at http://www.bitcoin.org

The root problem with conventional currency is all the trust that's required to make it work. The central bank must
be trusted not to debase the currency, but the history of fiat currencies is full of breaches of that trust. Banks must
be trusted to hold our money and transfer it electronically, but they lend it out in waves of credit bubbles with
barely a fraction in reserve. We have to trust them with our privacy, trust them not to let identity thieves drain our
accounts. Their massive overhead costs make micropayments impossible.

A generation ago, multi-user time-sharing computer systems had a similar problem. Before strong encryption,
users had to rely on password protection to secure their files, placing trust in the system administrator to keep their
information private. Privacy could always be overridden by the admin based on his judgment call weighing the
principle of privacy against other concerns, or at the behest of his superiors. Then strong encryption became
available to the masses, and trust was no longer required. Data could be secured in a way that was physically
impossible for others to access, no matter for what reason, no matter how good the excuse, no matter what.

Bitcoin: A Peer-to-Peer Electronic Cash System

Satosh1 Nakamoto
satoshin@gmx.com
www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial mstitution. Digital signatures provide part of the solution, but the main
benefits are lost i1f a trusted third party 1s still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing chain of
hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of
events witnessed, but proof that it came from the largest pool of CPU power. As
long as a majority of CPU power 1s controlled by nodes that are not cooperating to
attack the network, they'll generate the longest chain and outpace attackers. The
network itself requires mimimal structure. Messages are broadcast on a best effort
basis, and nodes can leave and rejoin the network at will, accepting the longest
proof-of-work chain as proof of what happened while they were gone.

Peer-to-Peer Ledger

Data integrity and data
agreement

» Data Integrity: Data Is legit.

» Data agreement: among all nodes and across time.

» This Is the "double spending” problem and is solved
by a consensus protocol.

Data Integrity: digital
sighatures

Sign(Message, sk) = Signature

pk: 01000010. .. pk: 01000011...
sk: 11011100. ..

Charlie

Veritying

Sign(Message, sk) = Signature
Verify(Message, Signature, pk) = T /F

X 00110001 ... X 10110000. ..

pk: 01000010... pk: 01000011...

B |sk: 11011100...

Charlie

Digital Signatures

Definition 13.1. A signature scheme & = (G, S,V) is a triple of efficient algorithms, G, S and
V', where GG is called a key generation algorithm, S is called a signing algorithm, and V' s
called a verification algorithm. Algorithm S is used to generate signatures and algorithm V' is
used to verify signatures.

o (7 is a probabilistic algorithm that takes no input. It outputs a pair (pk, sk), where sk is called
a secret signing key and pk is called a public verification key.

o S is a probabilistic algorithm that is invoked as o + S(sk,m), where sk is a secret key (as
output by G) and m is a message. The algorithm outputs a signature o.

o V is a deterministic algorithm invoked as V(pk,m, o). It outputs either accept or reject.

o We require that a signature generated by S is always accepted by V. That is, for all (pk, sk)
output by G and all messages m, we have

Pr[V(pk, m, S(sk, m)) = accept| = 1.

Boneh & Shroup 2023

Forgery Game

Challenger Adversary A
-
Tr; fo B
a; + S(sk,m;)
UI-
(., o)

Figure 13.1: Signature attack game (Attack Game 13.1)

No (computationally bounded) attacker can forge a signature
on any chosen message.

UTXO model

k1 ----=> pk2---> pk3 ---> pk4 >

Double spend

+» Paul sends two correctly sighed messages:
» Paul pays John 1 bitcoin.

+» Paul pays Peter 1 bitcoin

Inconsistent Ledgers

Challenges

» Synchronization (decentralization)

+ Sybil attacks (permissionless)

Data agreement:
Proof-of-work longest chain
protocol

Longest chain

Genesis ;]

"f o0 A
T
T

Proof-of-Work

Blockchain

Hash of previous block Prev

Proof-of-work Transactions Tx

00009873890
0

00007498499

VE
[
K] T
Q\\O —————— 07202%@ Hash(Prev, Tx,nonce) < threshold
0007498498 <
5
00001023434 _ ABAEHES308 / ?
e S \ 000019234344 -

Mining new block

Block verification

» Data Integrity: each transaction spends an UTXO with a
valid signature.

» Data agreement: proof-of-work Is valid.

