
EE 374: Fundamentals of Blockchain Infrastructure Stanford, Spring 2025

Lecture 14: Validity and Fraud Proofs, and Rollups

May 14, 2025

Lecturer: Prof. David Tse Scribe: Ertem Nusret Tas

1 Validity of a Blockchain

For full nodes of a blockchain (e.g., Bitcoin, Ethereum), no trust assumptions besides the correctness
of the blockchain’s virtual machine (e.g., the Bitcoin script, Ethereum Virtual Machine) are needed
to infer the validity of transaction execution. Indeed, the full nodes can execute the transactions
themselves, obtain the latest blockchain state, and check if the state root recorded on the blockchain
matches what they have obtained1. Note that this ‘trustless-ness’ property of validity is quite
strong: even if all validators (i.e., consensus nodes) of the blockchain are adversarial, they cannot
convince the full nodes to output an invalid transaction as part of their ledgers.

2 Validity and Fraud Proofs

The purpose of validity and fraud proofs is to enable light clients of the blockchain to verify the
validity of the transactions and the state obtained by executing them, without downloading and
executing all of these transactions themselves.
Formally, let sti denote the state of the blockchain after executing i transactions, and ϕ(·) denote

the state transition function. The function ϕ(·) takes as input the old state and a sequence of
transaction (or a single transaction), and outputs the new state: sti = ϕ(st0, (tx1, . . . , txi)). For
instance, sti in the case of Bitcoin and Ethereum would respectively be the set of UTXOs, and
the accounts of the Ethereum clients, whereas state transition would be determined by the Bitcoin
script and the Ethereum Virtual Machine (EVM).
Now, the state sti corresponding to the blockchain state at some block B is valid if there exist

some transactions tx1, . . . , txi such that

• sti = ϕ(st0, (tx1, . . . , txi)), where st0 is the correct genesis state enshrined by the blockchain’s
genesis block.

• (tx1, . . . , txi) is the sequence of transactions included in the blockhain, up until (and including)
block B.

Let stci denote the succinct commitment to the state sti. For instance, Ethereum commits to
the state (i.e., the sequence of accounts) using a (sparse) Merkle tree, and the Merkle root is the
succinct commitment to the Ethereum state.

1State root denotes a commitment to the blockchain state. As we have seen in the class, an example of a state root
is a Merkle root to a sequence of account balances.

1



2.1 Validity Proofs

A validity proof is a succinct proof that convinces the light clients that a given state committed by
the value stci is valid

2. Suppose the transactions tx1, . . . , txk are included within a block B, and let
root denote the Merkle root committing to the transactions. Let stci−1 denote the valid blockchain
state before block B. Here, we assume that we update the state block-by-block, instead of after
every transaction. Then, a succinct validity proof π enables the light client to verify that the state
underlying stci is valid, given only stci−1 and root. Formally, we define the relation

R := {(x = (stci−1, root, stci), w = (sti−1, sti, (tx1, . . . , txk)) :

root is the Merkle tree root of (tx1, . . . , txk)∧
stci−1 is a commitment to the state sti−1∧
stci is a commitment to the state sti}

Here, x denotes the (public) problem statement part of the relation, and w denotes the witness.
The proof π enables light clients to verify against x that there indeed exists a witness w for x, i.e.,
x is in the language defined by the relation R, the language of valid state roots.
A trivial question here would be why one needs a proof π, since providing the witness w would

also prove to the light client that a given x is in the language. Although this is true, the witness w
is as large as the total state, including at least all transactions within a block B. In contrast, π is
either constant size (three elliptic curve group elements in Groth16 [2]), or poly-logarithmic.
The validity proofs are typically generated using succinct non-interactive arguments of knowledge

(SNARKs), a cryptographic object characterized by the following algorithms:

• S(R) → (pk, vk), where pk is the public key and vk is the verifier key.

• P (pk, x, w) → π, where π is the proof.

• V (vk, x, π) → 0/1, where 1 denotes accepting the proof, and 0 denotes rejection.

The SNARK must satisfy the following properties:

• Completeness: ∀x,w, if R(x,w) = 0 (relation is satisfied, note that we use 0 to denote
this), then Pr[V (vk, x, P (pk, x, w)) = 1] = 1.

• Knowledge Soundness: Informally, if V outputs 1, then the prover running P ‘knows’ a
witness w such that R(x,w) = 1.

2.2 Fraud Proofs

One limitation of the validity proofs solution is that it requires posting proofs periodically to the
blockchain, i.e., on the happy path. To resolve this limitation, blockchains use so-called optimistic
methods, where the state is updated by the validators without any proving in normal operation,
but is under constant supervision of so-called watchtowers, that execute the transactions, obtain
the correct state roots and compare those with the ones included in the blockchain. When the

2Here, succinct means that the size of the proof is constant or poly-logarithmic in the size of the witness described
below.

2



Figure 1: State consists of 4 elements, each denoting the account balance of a client/user. The
client 2’s account is updated by a transaction. To enable the light clients to compute
the new Merkle (state) root, the watch towers publish the inner nodes circled in red.
Then, hashing (c2, 4 ETH), light clients find the new value of the inner node u′⊥,0,1. Then,
they find the new value of the inner node u′⊥,0 = H(u⊥,0,0, u

′
⊥,0,1) and the Merkle root

u⊥ = H(u′⊥,0, u⊥,1) iteratively.

validators turn malicious, and confirm an invalid transaction, or include an invalid state root, these
watch towers can raise an alarm by publishing fraud proofs.

Recall that we were posting one state root per block. For efficiently-verifiable fraud proofs,
validators post state roots after each transaction. Suppose the first invalid state root is st′i, and
watchtowers noticed that the correct state root at that position must have been sti. Then, the
watchtowers can raise an alarm by simply pointing out that the correct state root must have been
sti.
Now, how does a light client verify that indeed there was an incorrect state? Note that we do

not want the light clients to download all of sti−1 and find sti = ϕ(sti−1, txi) ̸= st′i by naively
running ϕ(·). Lucikly, the structure of Merkle trees enables the light clients to update the old state
root sti−1 given the transaction txi and obtain the new state root by downloading only logarithmic
amount of information in the size of the state (see Fig. 1). To facilitate this solution, the watch
towers provide the sibling nodes of the inner nodes on the path from the state elements updated by
the transaction txi (suppose there is only one such state element) to the root. Then, by applying
txi to these state elements and iteratively calculating the new inner nodes of the Merkle tree, the
light clients can derive the new Merkle root, i.e., the new state root. This solution was pioneered
by AlBassam, Sonnino, Buterin and Khoffi [1], which gives a detailed explanation of it (also posted
on the website).

3 Rollup

Recall the blockchain trilemma, i.e, the tension among decentralization, throughput and security.
There are two potential solutions to this trilemma:

3



Figure 2: Example of a ZK rollup. Rollup transactions are posted to Ethereum along with a proof
that verifies the state. In this example, there are two rollups with their own transactions,
denoted by the colors yellow and dark blue.

• Vertical scaling corresponds to demanding more compute and bandwidth from each blockchain
node. For instance, Solana requires validators with stronger compute, and can thus achieve
2000 − 5000 transactions per second. Although this ensures better throughput, it comes at
the expanse of decentralization, by excluding computationally weaker nodes from being a
validator.

• Horizontal scaling aims to increase throughput while keeping security and decentralization.
A major example of horizontal scaling is the rollup (layer 2 or L2) architecture.

The scaling problem of Ethereum gained attention due to the CryptoKitties incident, which re-
vealed the execution bottleneck of Ethereum. There are three metrics of scaling: communication,
execution and storage. For Ethereum, the main bottleneck, as observed by the CryptoKitties inci-
dent was execution. In this context, rollups emerged as a prominent solution to resolve Ethereum’s
execution bottleneck.
In the rollup architecture, a sequencer batches transactions into blocks, and posts these blocks

to Ethereum (Fig. 2). Then, Ethereum essentially acts as a light client of the rollup transactions.
Although rollups bundle and post their transactions to Ethereum, the Ethereum validators do not
execute the rollup transactions. Instead, for the so-called ZK rollups, Etheruem validators only
verify the validity proofs posted for the state of the rollup’s execution, or for the so-called optimistic
rollups, they only verify the fraud proofs (when there is a fraud). This way, Ethereum validators
know that the rollup transactions and state are valid, without having to execute them. In this
sense, Ethereum acts as an execution light client of rollups (not a full light client, as the rollups
still post all their data to Ethereum).

References

[1] M. Al-Bassam, A. Sonnino, V. Buterin, and I. Khoffi. Fraud and data availability proofs:
Detecting invalid blocks in light clients. In Financial Cryptography (2), volume 12675 of Lecture

4



Notes in Computer Science, pages 279–298. Springer, 2021.

[2] J. Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT (2), volume
9666 of Lecture Notes in Computer Science, pages 305–326. Springer, 2016.

5


	Validity of a Blockchain
	Validity and Fraud Proofs
	Validity Proofs
	Fraud Proofs

	Rollup

