
EE 374: Fundamentals of Blockchain Infrastructure Stanford, Spring 2025

Lecture 17: Linear Horizontal Scaling via Data Availability - Part I

March 31, 2025

Lecturer: Prof. David Tse Scribe: Dylan Iskandar

1 Rollups Recap

1.1 Why Rollups?

• Goal: scaling compute without sacrificing decentralization or security.

• The state transition of a smart contract is delegated to an operator off-chain who batches
many user transactions and submits the batch, along with a succinct validity proof (e.g. a
SNARK) back to L1. The validity proof enables keeping the on-chain verification cost O(1),
while allowing arbitrarily large batches.

• Figure 1.1 shows the operator computing the new state root off-chain and publishing only
the proof and the new root on-chain. The L1 chain does not compute the new state root
using the posted transactions, instead verifying the validity proof. Users rely on L1’s security
guarantees for safety and correctness.

1.2 Performance

If computation is the sole bottleneck, rollups already ensure horizontal scalability. However, once
throughput increases further, communication and storage will become the limiting resources.

1



2 Validium

• Users submit transactions to the Validium operator.

• The operator computes a new state root and a validity proof off-chain (just like a rollup),
but does not put the raw data on L1.

• Data chunks are dispersed to a Data-Availability Committee (DAC) whose members
store erasure-coded pieces and collectively sign a certificate of retrievability.

• The L1 contract accepts a state update iff

1. the SNARK verifies (validity), and

2. a quorum q of DAC signatures accompanies the commitment (availability).

Compared with a rollup, Validium removes all data from the main chain, pushing both computation
and storage off-chain, while adding only an honest assumption on the DAC. We next discuss how
a DAC with sufficiently many honest members ensure the availability of the transaction data.

3 Data Availability

3.1 Desiderata

• Dispersal: A block proposer “disperses” the block B by slicing it into pieces, encoding the
pieces into n shares, and sending one coded share to each storage node. Every honest node
responds with a certificate of retrievability (a signed receipt) for the share it accepted.

• Retrievability: Possession of a valid certificate guarantees that some set of at least k honest
nodes collectively hold enough shares to reconstruct B. A user who obtains those shares can
run Retrieve on these shares to recover the exact block. In general, k correct shares are
sufficient to recover the data.

• Verifiability: The certificate must be verifiable on-chain and the per-node overhead for
compute, communication, and storage should remain O(1) even as throughput scales

2



3.2 Data Availability Primitive

The protocol is captured by the following five algorithms (all but Setup are deterministic):

Setup(1λ): Generates global public parameters pp and a secret signing key spj for every storage
node j ∈ [n].

Commit(B): Outputs a binding commitment C ← Hash(B) that will later be stored on L1.

Disperse(B): Encodes B into n shares, sends share cj to node j, collects q distinct signatures
Sigspj (cj), and bundles them into a certificate P .

Verify(P,C): Stateless predicate (implemented as an on-chain pre-compile) that checks that at
least q valid node signatures in P are on shares consistent with the commitment C; returns
{0, 1}.

Retrieve(P,C): Using any k shares authenticated inside P , interpolates the erasure code to recover
B̂ and accepts iff Commit(B̂) = C.

These algorithms satisfy binding, correctness, and availability exactly as formalized on slide 17.

3.3 Encoding

• Naively storing the entire block at every node is reliable but wasteful; distributing the block
across nodes is efficient but fragile. Erasure coding achieves both efficiency (k/n storage
overhead) and resilience (t Byzantine nodes tolerated).

• Let the code have length n and dimension k, and suppose the data availability scheme uses a
quorum size of q. Security analysis (slide 18) shows that correctness requires n− t ≥ q, and
availability requires q − t ≥ k, so the system is secure up to

t = min (q − k, n− q), tmax =
n− k

2
.

Here, t denotes the number of adversarial nodes.

3.4 Reed-Solomon Codes

Given k information symbols u1, . . . , uk ∈ Fq, the Reed-Solomon codes form the degree-(k−1)
polynomial

P (x) = u1 + u2x+ · · ·+ ukx
k−1.

The encoded code-word is ci = P (αi) for i = 1, . . . , n, where the αi’s are distinct non-zero field
elements from a finite field. Because any k evaluations determine a degree-(k−1) polynomial, every
set of k columns in the generator matrix are linearly independent (i.e., Reed-Solomon codes achieve
the MDS bound).

3



3.5 Why this is not enough in the blockchain setting?

Erasure coding (e.g., using Reed-Solomon codes) alone guarantees that some set of nodes can
reconstruct the block, but it does not stop a malicious operator from sending inconsistent or
malformed shares that still look well-formed to each individual node. If even a single honest node
incorrectly signs such a share, the certificate of retrievability becomes worthless.
To thwart this attack, each node must be able to check locally that “the chunk I received is

good”—i.e. that it is a legitimate code-word symbol of the block that is being committed on-
chain. The lecture introduces linear vector commitments (LVCs) for this purpose: a homomorphic,
constant-size commitment scheme VC(·) such that

VC
(
αv + βw

)
= αVC(v) + β VC(w) for all α, β ∈ Fq.

Using LVCs, an operator must attach to every share cj a proof that locally verifies VC(cj) =[(
Encode(h1, . . . , hk)

)]
j
, where h1, . . . , hk are the commitments to the original chunks. Only if this

check passes, will node j sign, ensuring that a quorum of signatures implies global consistency of
the encoded block. This is further explained in the next lecture node.

4


	Rollups Recap
	Why Rollups?
	Performance

	Validium
	Data Availability
	Desiderata
	Data Availability Primitive
	Encoding
	Reed-Solomon Codes
	Why this is not enough in the blockchain setting?


