

Lecture 18: Linear Horizontal Scaling via Data Availability - Part II

June 2, 2025

Lecturer: Prof. David Tse

Scribe: Neil Parasher

1 Goal & Big Picture

Linear horizontal scaling means

$$\text{throughput} \propto n, \quad \text{per-node storage \& bandwidth} = O(1),$$

where n is the number of parties in the consensus protocol. Execution rollups already attack the *compute* bottleneck, and the remaining obstacle is **data availability**. We will see that **Verifiable Information Dispersal (VID)** – erasure coding + linear vector commitments + quorum certificates – enables overcoming the communication bottleneck, thus achieving horizontal scalability.

2 Erasure Coding Refresher

A *maximum-distance separable* (MDS) code encodes $\mathbf{u} \in \mathbb{F}^k$ to $\mathbf{c} = \mathbf{u}\mathbf{G}^\top \in \mathbb{F}^n$ with $n \geq k$ so that *any* k coded symbols suffice to recover \mathbf{u} .

$$\underbrace{(u_1, \dots, u_k)}_{k \text{ info symbols}} \xrightarrow{\text{RS encode}} (c_1, \dots, c_n), \quad n \geq k.$$

Trade-off. Larger $n - k$ adds redundancy (higher reliability) but increases aggregate storage. Keeping k/n constant ensures each node stores $O(1)$ data, while the network stores $O(n)$.

3 Linear Codes in Matrix Notation

$$\mathbf{C}^\top = \mathbf{U}^\top \mathbf{G}, \quad \mathbf{G} \in \mathbb{F}^{k \times n} \text{ full rank.}$$

Any k columns of \mathbf{G} are full rank \Rightarrow invertible square sub-matrix, hence the MDS property. Reed–Solomon is the classic linear instantiation.

4 Why Verifiable Coding?

Crash-fault tolerance (Google data server example) only worries about *loss*. Blockchains demand Byzantine tolerance: malicious validators might submit malformed shares after encoding the data into multiple shares. Therefore nodes must *verify* that the received share is correctly generated *before signing* the received share (see lecture 17 notes for the role of signing within the data availability primitive). We achieve this with a **Linear Vector Commitment (LVC)**:

$$\text{Com} : \mathbb{F}^k \longrightarrow \{0, 1\}^{256}, \quad \text{Com}(\alpha \mathbf{v} + \beta \mathbf{w}) = \alpha \text{Com}(\mathbf{v}) + \beta \text{Com}(\mathbf{w}).$$

The LVC satisfies the following properties:

- *Binding* (collision-resistant).
- *Linearity* lets nodes check their shares locally.

5 Protocol Construction (high level)

AVID-FP: "Verifying distributed erasure-coded data", Hendricks et al., PODC'07

Construction – High Level

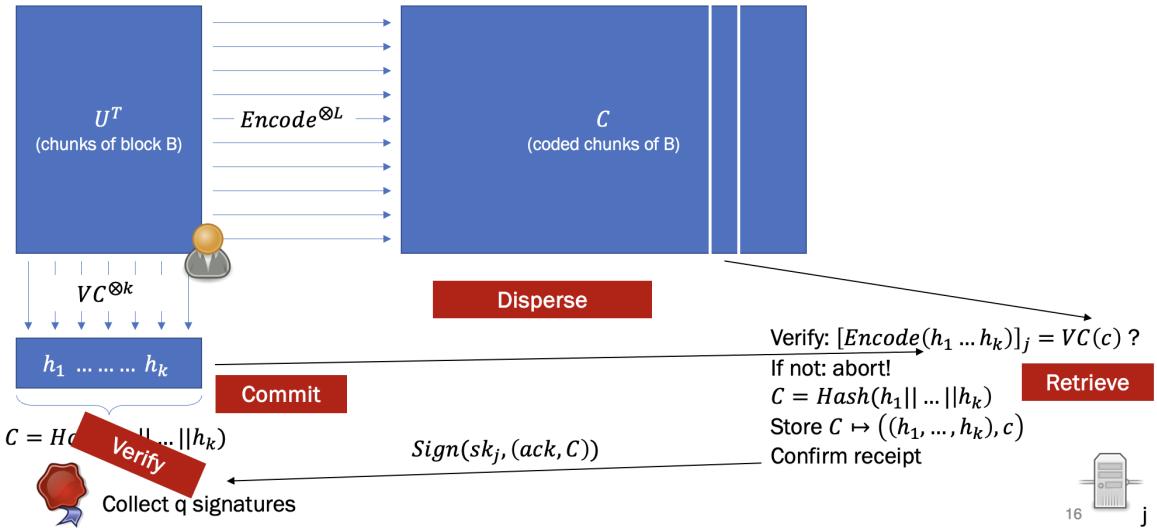


Figure 1: High-level VID pipeline (lecture slide 16).

Step-by-step:

1. Block proposer splits block B into L rows $\mathbf{U}^{(1)\top}, \dots, \mathbf{U}^{(L)\top}$ and encodes each: $\mathbf{C}^{(\ell)\top} = \mathbf{U}^{(\ell)\top} \mathbf{G}$.
2. Computes column commitments $h_i = \text{Com}(\mathbf{U}_i^\top)$ and aggregates $C = \text{hash}(h_1 \parallel \dots \parallel h_k)$.
3. **Disperse:** sends column ℓ plus (h_1, \dots, h_k) to server ℓ for $\ell = 1, \dots, n$.
4. Server verifies $[\text{Encode}(h_1 \dots h_k)]_\ell = \text{Com}(\mathbf{C}_\ell)$; if this checks out, it signs $\sigma_\ell = \text{Sign}(sk_\ell, \text{ack}, C)$.
5. Once any quorum q signatures collected, (C, σ) is posted on-chain, where σ denotes the quorum of signatures, such as an aggregate signature (**Commit**).
6. Light client later **retrieves** any k shares that carry quorum badges, checks commitments, reconstructs block B .

Throughput. Each node stores one column and verifies $O(1)$ hashes, yet the network can disperse $O(n)$ data per round.

6 Security Definitions

Commitment-Binding $\text{Com}(\cdot)$ is deterministic and collision-resistant.

Correctness If an honest client runs $\text{DISPERSE}(B)$, it eventually obtains a certificate P s.t.

$$\text{VERIFY}(P, \text{Com}(B)) = 1.$$

Availability If $\text{VERIFY}(P, C) = 1$, then $\text{Com}(\text{RETRIEVE}(P, C)) = C$.

Question: for what number t of Byzantine servers do these hold?

7 Fault-Tolerance Analysis

Let n =total servers, t =Byzantine, q =quorum, k =shares needed.

$$\text{Correctness: } n - t \geq q, \quad \text{Availability: } q - t \geq k \implies t < \min\{q - k, n - q\}.$$

7.1 Optimising quorum q

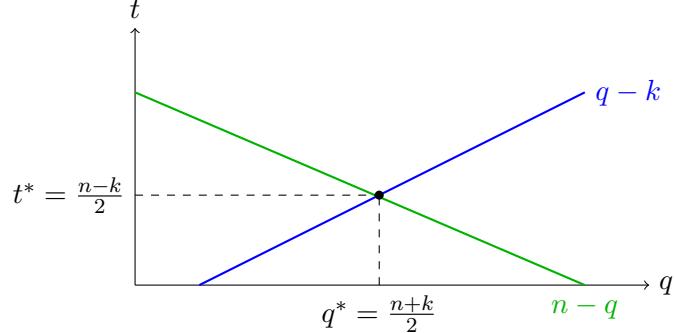


Figure 2: Intersection yields optimal $q^* = \frac{n+k}{2}$, $t^* = \frac{n-k}{2}$.

7.2 Varying k (fixed n)

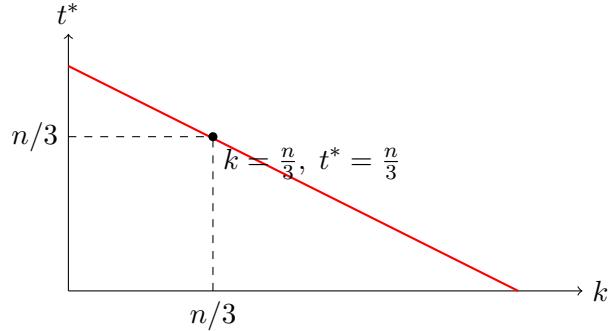


Figure 3: Keeping $k \propto n$ preserves linear scalability.

Choosing, say, $k = n/3$ gives $t^* = n/3$ — the same resilience ratio as classic BFT consensus.

8 Take-aways

- VID decouples data from consensus, giving $O(1)$ effort per node and $\Theta(n)$ total throughput.
- Optimal quorum $q^* = \frac{n+k}{2}$ tolerates $t^* = \frac{n-k}{2}$ Byzantine servers.
- Setting $k \propto n$ (e.g. $k = n/3$) retains linear scaling while matching classical BFT resilience.