
EE 374: Fundamentals of Blockchain Infrastructure Stanford, Spring 2025

Lecture 18: Linear Horizontal Scaling via Data Availability - Part II

June 2, 2025

Lecturer: Prof. David Tse Scribe: Neil Parasher

1 Goal & Big Picture

Linear horizontal scaling means

throughput ∝ n, per-node storage & bandwidth = O(1),

where n is the number of parties in the consensus protocol. Execution rollups already attack the
compute bottleneck, and the remaining obstacle is data availability. We will see that Verifiable
Information Dispersal (VID) – erasure coding + linear vector commitments + quorum certifi-
cates – enables overcoming the communication bottleneck, thus achieving horizontal scalability.

2 Erasure Coding Refresher

A maximum-distance separable (MDS) code encodes u∈Fk to c = uG⊤ ∈ Fn with n ≥ k so that
any k coded symbols suffice to recover u.

(u1, . . . , uk)︸ ︷︷ ︸
k info symbols

RS encode−−−−−−→ (c1, . . . , cn), n≥k.

Trade-off. Larger n − k adds redundancy (higher reliability) but increases aggregate storage.
Keeping k/n constant ensures each node stores O(1) data, while the network stores O(n).

3 Linear Codes in Matrix Notation

C⊤ = U⊤G, G ∈ Fk×n full rank.

Any k columns of G are full rank ⇒ invertible square sub-matrix, hence the MDS property.
Reed–Solomon is the classic linear instantiation.

4 Why Verifiable Coding?

Crash-fault tolerance (Google data server example) only worries about loss. Blockchains demand
Byzantine tolerance: malicious validators might submit malformed shares after encoding the data
into multiple shares. Therefore nodes must verify that the received share is correctly generated
before signing the received share (see lecture 17 notes for the role of signing within the data
availability primitive). We achieve this with a Linear Vector Commitment (LVC):

1



Com : Fk −→ {0, 1}256, Com(αv + βw) = αCom(v) + βCom(w).

The LVC satisfies the following properties:

• Binding (collision-resistant).

• Linearity lets nodes check their shares locally.

5 Protocol Construction (high level)

Figure 1: High-level VID pipeline (lecture slide 16).

Step-by-step:

1. Block proposer splits block B into L rowsU(1)⊤, . . . ,U(L)⊤ and encodes each: C(ℓ)⊤ = U(ℓ)⊤G.

2. Computes column commitments hi = Com
(
U⊤

i

)
and aggregates C = hash(h1∥ · · · ∥hk).

3. Disperse: sends column ℓ plus (h1, . . . , hk) to server ℓ for ℓ = 1, . . . , n.

4. Server verifies
[
Encode(h1. . . hk)

]
ℓ
= Com(Cℓ); if this checks out, it signs σℓ = Sign(skℓ, ack, C).

5. Once any quorum q signatures collected, (C, σ) is posted on-chain, where σ denotes the
quorum of signatures, such as an aggregate signature (Commit).

6. Light client later retrieves any k shares that carry quorum badges, checks commitments,
reconstructs block B.

2



Throughput. Each node stores one column and verifies O(1) hashes, yet the network can disperse
O(n) data per round.

6 Security Definitions

Commitment-Binding Com(·) is deterministic and collision-resistant.

Correctness If an honest client runs Disperse(B), it eventually obtains a certificate P s.t.

Verify(P,Com(B)) = 1.

Availability If Verify(P,C) = 1, then Com(Retrieve(P,C)) = C.

Question: for what number t of Byzantine servers do these hold?

7 Fault-Tolerance Analysis

Let n=total servers, t=Byzantine, q=quorum, k=shares needed.

Correctness: n− t ≥ q, Availability: q − t ≥ k =⇒ t < min{ q − k, n− q }.

7.1 Optimising quorum q

q

t

n− q

q − k

q∗ = n+k
2

t∗ = n−k
2

Figure 2: Intersection yields optimal q∗ = n+k
2 , t∗ = n−k

2 .

3



7.2 Varying k (fixed n)

k

t∗

n/3

n/3

k = n
3 , t

∗ = n
3

Figure 3: Keeping k ∝ n preserves linear scalability.

Choosing, say, k = n/3 gives t∗ = n/3 — the same resilience ratio as classic BFT consensus.

8 Take-aways

• VID decouples data from consensus, giving O(1) effort per node and Θ(n) total throughput.

• Optimal quorum q∗ = n+k
2 tolerates t∗ = n−k

2 Byzantine servers.

• Setting k ∝ n (e.g. k = n/3) retains linear scaling while matching classical BFT resilience.

4


	Goal & Big Picture
	Erasure Coding Refresher
	Linear Codes in Matrix Notation
	Why Verifiable Coding?
	Protocol Construction (high level)
	Security Definitions
	Fault-Tolerance Analysis
	Optimising quorum q
	Varying k (fixed n)

	Take-aways

