EE 374: Fundamentals of Blockchain Infrastructure Stanford, Spring 2025

Lecture 2: Introduction to Bitcoin
April 2, 2025

Lecturer: David Tse Scribe: Naomi Mo

Lecture Reading: “Bitcoin: A Peer-to-Peer Electronic Cash System” (https://bitcoin.org/
bitcoin.pdf)

1 Introduction

Bitcoin is a decentralized payment system that uses a longest chain, proof-of-work consensus proto-
col to validate transactions and secure the network, ensuring that no single entity can manipulate
the system or alter transaction history. This lecture explores the origins and motivations behind
Bitcoin, the issues it aims to solve (data integrity and data agreement), and the cryptographic
techniques it employs to address them (digital signatures and cryptographic hash functions).

2 Satoshi Nakamoto and the Creation of Bitcoin

On February 11, 2009, a message posted by user “Satoshi Nakamoto” appeared on the website
P2P Foundation announcing a “new open source P2P e-cash system called Bitcoin”, citing that
the root problem with traditional currency is trust. For example, we must trust banks to hold and
manage our money, facilitate transactions, and maintain our privacy; however, banks often breach
this trust, whether by lending our money away in credit bubbles (as observed in the 2008 financial
crisis) or falling victim to identity theft perpetrated by malicious actors. Nakamoto posited that
strong encryption has now enabled humanity to remove trust from the loop, thus motivating the
creation of Bitcoin (and subsequently the development of a 3-trillion dollar industry).

Nakamoto elaborates on this system further in his whitepaper “Bitcoin: A Peer-to-Peer Electronic
Cash System”, which was published online just a few months prior in October 2008. [3] The ab-
stract of the paper states that the cash system “requires minimal structure” and is permissionless,
meaning that nodes can leave and rejoin the network at will. It also delineates the use of digital
signatures and a peer-to-peer network to solve data integrity and data agreement issues.

3 Peer-to-Peer Networks and Ledgers

Bitcoin is a peer-to-peer (P2P) network, meaning that it involves a collection of nodes maintain-
ing (i.e., achieving agreement on) a ledger, or a sequence of financial transactions. Any node can
join or leave the system, and each node maintains its own local copy of the sequence of transactions.

It is difficult to ensure synchronization across these local copies. For instance, say that you and
three friends (Alice, Bob, and Charlie) each maintain your own transaction history (as observed in
Figure [1)).


https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

Charlie

Figure 1: You, Alice, Bob, and Charlie maintain your own ledgers of the system’s transactions.

Each transaction history records the change of ownership of a bitcoin from one holder to another,
e.g. “Charlie pays you 1 bitcoin” or “Alice pays Bob 1 bitcoin”. All ledgers in this system must
record valid transactions, and they must list these transactions in the same order. Otherwise, the
ledger will be incorrect or inconsistent, and the true state of the system will be lost (for example,
Alice may believe you have 2 BTC while Bob may believe you have 3 BTC).

We observe that in order for this ledger system to work, it must have:

1. Data Integrity: Data must be legitimate. Nodes in a system should only allow good data
and reject bad data.

2. Data Agreement: All nodes agree on data at all times; everyone maintains the same view
of history. Without data agreement, there exists the potential for data/currency to be spent
multiple times, known as the “double spending” problem.

4 Data Integrity and Digital Signatures

To solve the issue of data integrity, Bitcoin uses a cryptographic technique called a digital signature,
which allows a user to ensure the authenticity of a transaction from a given sender.

We define a digital signature scheme as the one presented by Dan Boneh and Victor Shoup [2],
involving three algorithms:

1. a key generator G: a probabilistic algorithm that takes no input and outputs a pair of keys
(pk, sk) (one public, one secret).



2. a signer S: a probabilistic algorithm that takes the secret key sk and a message m as input
and then outputs a signature o.

3. a verifier V: a deterministic algorithm that takes the public key pk, message m, and signature
o as input and then outputs either accept or reject.

G —>;§1€, sk

v

m——> S P»m,o=> V

}

accept/reject

Figure 2: Block diagram of the signature scheme.

As an example of the signature scheme, recall our friends Alice, Bob, and Charlie, and observe
their transactions in Figure 3]

Sign(Message, sk) = Signature
Verify(Message, Signature, pk) = T/F

X 00110001 . .. X 10110000...

pk: 01000010. .. pk: 01000011 ...

@[5k 10010001 ...] @[sk: 11011100. ..

Charlie

Figure 3: Alice, Bob, and Charlie and their keys.

If Alice wants to pay Bob one bitcoin, she can draft the message “Alice pays Bob 1 bitcoin”
(though in reality, her message will use Bob’s public key rather than his name). The sign function
S will use Alice’s message and secret key to create a unique signature; Alice will then send this
signature with her message into the network as a complete transaction. The verifier V will then
receive this message, signature, and Alice’s public key, and output either accept or reject.



It is important to note that the signature generated by S should always be accepted by V; that
is, for all generated keys and messages, Pr[V (pk, m,S(sk,m)) = accept] = 1. This is considered
the protocol’s “happy path”, which means the protocol is operating under normal functioning (i.e.,
without attacks).

When the protocol is under attack and must reject the attack, it is considered to be on the
“unhappy path.” Good signature schemes will satisfy the "no-forgery” security property, mean-
ing that no (computationally bounded) attacker can forge a signature on any chosen message with
non-vanishing probability. We use a signature attack game (figure {4 to illustrate this concept.
Consider an adversary A mounting a chosen message attack on another node (which we shall call
the challenger), meaning A can request the challenger’s signature and choose any message to forge
a signature on.

Challenger Adversary A

(pk, sk) <& G() ok

ke i 74

a; + S(sk,m;)

(m, o)

Figure 4: Signature attack game, from Boneh & Shoup 2023. [2]

Since A does not have access to the challenger’s private key sk, they cannot directly generate
the signature o for a new message m, so they attempt to achieve a correct signature by iterating
different message queries m;. For each m;, they are returned a signature o; from the challenger.

However, brute-forcing messages to find a correct (m, o) pair would take significant computational
resources given the vast nature of mappings to the signature space. Therefore, without the private
key, generating a valid signature with a new message m (one not previously queried) is rendered
computationally impractical, and the signature scheme is considered sound from A’s attacks.

On this note, we conclude the section with a summary of the two properties that comprise a
good signature scheme:

1. Correctness: “good stuff happens.” The verifier accepts a proper signature.

2. Soundness/security: “Bad stuff doesn’t happen.” The protocol is impervious to attacks.

Most systems are designed to simultaneously achieve these two properties. However, there is one
small caveat: we assume the adversary is not a super computer, and that they are computationally



bounded. This means that the adversary’s computational power cannot be exponentially as large
as the key bits; otherwise, they have the computational capability to create an existential forgery.

5 Data Agreement and Cryptographic Hash Functions

To motivate the issue of data agreement, we examine the Unspent Transaction Output (UTXO)
Model, which is the foundation of Bitcoin’s operation. In the UTXO model, each bitcoin has an
associated public key that proves ownership (consider pkl as a bitcoin’s first ownership, pk2 for the
second, and so on as in Figure . In this model, transactions have both an input and an output:
they take unspent transaction outputs as input (ensuring transfers cannot be initiated from spent
transactions) and then generate a new unspent transaction output, signifying a transfer.

pk1—> pk2—> pk3—>pkd —> ...

Figure 5: These public keys refer to different reincarnations of the same bitcoin under different
ownerships.

Say that the holder of pkl wants to transfer their bitcoin to a new holder, so they initiate a
transaction. This transaction would operate as follows:

1. Key Generation: The new recipient generates a public-private key pair (pk2,sk2); the
public key pk2 is shared with the original holder pk1, while the private key sk2 is kept secret.

2. Signing the Transaction: The current holder of pkl signs a message of the form “I give
this bitcoin to pk2” using their private key skl.

3. Verification: The recipient verifies that the message is valid using the sender’s public key
pkl.

4. Ownership Transfer: If the message is accepted by the verifier, then the bitcoin is trans-
ferred to pk2. The holder of pk2 is now able to repeat the process and transfer the bitcoin to
another recipient.

We observe that bitcoin ownership evolves overtime as it passes from one public key to another:
pkl —pk2 —pk3 —... and so on. Now, while the digital signature scheme ensures that all transac-
tions are valid, there remains the double spending problem.

Say that there are three friends: Paul, John, and Peter. Paul owns 1 bitcoin and sends two
messages into the network, as illustrated in Figure [} “Paul pays John 1 bitcoin” and “Paul pays
Peter 1 bitcoin.” Both of these transactions are completely valid, as they (1) come from an unspent
transaction output and (2) both come with valid signatures. However, this situation creates incon-
sistent ledgers, as the same bitcoin is being spent twice. Nodes that first observe John receiving the



bitcoin will believe that John owns the coin, and reject Peter’s ownership because it comes from
a spent transaction. The opposite belief will occur for the nodes that first observe Peter receiving
the bitcoin.

John
Paul/. Pk

Pk1—> pk2 —> pk3 —> pk4
™~ pk6
Peter

Figure 6: Two valid transactions from Paul to both John and Peter.

To prevent double spending, the network must maintain consensus on the sequence of events.
However, we observe two primary challenges for achieving consensus:

1. Synchronization: Different nodes may have different transaction orderings. They may try
to reconcile their views via majority voting, but network delays make it difficult to synchronize
voting to happen at the same time for every node.

2. Sybil Attacks: In a permissionless system, anyone can join the network and create multiple
identities. This has the potential to lead to unstable decision making if a majority vote is used
as the basis for consensus (imagine an adversary creating many accounts and dominating the
network).

To address these issues, Bitcoin uses a proof-of-work (PoW), longest chain protocol; we
will first examine the longest chain aspect. Imagine we have a blockchain of one block in the net-
work, which we call the genesis block. This is depicted in Figure[7], which also shows the network
nodes across the globe.

Nodes distributed around the world engage in a process called mining to generate new blocks
and add them to the blockchain. When a new block is mined, it is verified by the network before
being appended to the chain. However, because of network delays or adversarial actions, different
miners may sometimes build on different blocks simultaneously. These timing differences lead to
temporary divergences, known as forks, in the blockchain. To resolve these forks and maintain
a consistent history, the blockchain employs the longest chain protocol: nodes accept the chain
with the greatest cumulative proof-of-work (the longest chain) as the valid one. Shorter chains or
forks are then discarded, ensuring that a single sequence of events is maintained across the network.



=

e

Genesis [?
®
T
T
I

Figure 7: Distributed nodes mining for a block to add to the blockchain

Next, we examine the proof-of-work concept, which is a design principle used to prevent min-
ers from adding blocks at will to dominate the Bitcoin system. The PoW method ensures that
adding a new block requires significant computational effort, which discourages malicious actors
from attempting to take control of the network.

The mining process is as follows:

1. A miner intending to mine a block obtains the hash of the previous block, called Prev. Note
that each block contains a reference to the previous block’s hash, ensuring that the blocks
are linked together in a chain.

2. The miner collects all validated transactions Tz from the network that they wish to put in
their new block (e.g., Paul gave 1 BTC to Peter).

3. After assembling the data/transactions into a block, the miner attempts to solve a compu-
tational puzzle of the form “Hash(Prev,Tz,nonce) < threshold”, as seen in Figure [8l The
miner must use trial and error to find a value of the nonce that satisfies the inequality.

e The hash function used in this inequality is a SHA-256 Hash Function that takes any
size input data and produces a 256-bit (32-byte) hash value output.

e The term nonce is short for “number used once”, and is the cryptographic name for a
variable to solve.

e The threshold is a target value that the computed hash must be less than in order for
the block to be considered valid; this threshold is not a fixed number, and is adjusted
periodically based on the cost of energy and hardware. The number of leading zeros in
the threshold determines the computational difficulty (i.e., a threshold with 80 leading
zeroes would require - on the average - 289 attempts).

4. Once the miner finds a valid solution, their block will be added to the blockchain as it has
satisfied the required proof-of-work.



Blockchain

0008320759
(=

Hash of previous block Prev

Proof-of-work Transactions Tx

Hash(Prev, Tx, nonce) < threshold
f)

Mining new block

Figure 8: A miner’s ”proof-of-work” is solving a computational puzzle. Once this puzzle is solved,
the miner will add the proof of their solution (the nonce) to the block, then add the block
to the chain.

References

[1] 3BluelBrown. But how does bitcoin actually work?, 2017.

[2] D. Boneh and V. Shoup. Definition of a digital signature. In A Graduate Course in Applied
Cryptography, pages 528-529. 2023.

[3] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.



	Introduction
	Satoshi Nakamoto and the Creation of Bitcoin
	Peer-to-Peer Networks and Ledgers
	Data Integrity and Digital Signatures
	Data Agreement and Cryptographic Hash Functions

