EE 374: Fundamentals of Blockchain Infrastructure Stanford, Spring 2025

Lecture 4: Bitcoin Transactions and Bitcoin Script
April 9, 2025
Lecturer: Robin Linus Scribe: Matthew Sato

1 Introduction

In this lecture, two main topics are discussed: Bitcoin transactions and Bitcoin scripts. The
differences between a typical account model and UTXO (coin) model are discussed. Then, an
introduction to the Bitcoin scripting language is provided with several examples.

2 Bitcoin Transactions

Bitcoin transactions are the mechanism by which bitcoins can be transferred from one owner to
another. Before diving into the Bitcoin model, let’s consider several requirements that guide the
design of a transaction:

e sender: the current owner of the coin

e recipient: the receiver of the coin

e amount: the amount of Bitcoin to receive

e signature: a cryptographic signature to authenticate the transaction

Two distinct transaction models are commonly used to keep records for payments and tracking
a user’s balance. The Account Model represents a typical balance sheet, but Bitcoin does not use
the Account Model. Instead, Bitcoin uses the unspent transaction output (UTXO) model.

2.1 The Account Model

The account model uses a ledger which assigns a single entry per user. Each user has a unique
account which stores their current balance, demonstrated in Table Transactions modify the
balance directly, similar to how a bank tracks user balances. The account model is simple and
straightforward, but is vulnerable to replay attacks. Blockchains such as Ethereum use the account
model, but Bitcoin does not.

2.2 The UTXO (Coin) Model

The UTXO model uses a single entry per coin (rather than per user in the account model) as
shown in Table [2l Users can own multiple coins and must refer to specific coins when spending. In
a UTXO transaction, coins used as inputs are consumed and cannot be used in future transactions.
The result of a transaction are new coins.



Name ‘ Balance

Alice 42 B
Bob 23 B
Carol 7B
Dave 59 B

Table 1: The account model for transactions.

Coin ‘ Owner ‘ Amount

1 Alice 118
2 Bob 29 B
3 Carol 17 B
4 Alice 5B

Table 2: The UTXO model for transactions.

Since Bitcoin uses the UTXO model, let’s examine the UTXO model in more detail with several
examples. Figure shows the framework for a typical Bitcoin transcation. In the most simple
form, the input of the transaction is the coin_id and the signature of the owner of the coin.
Meanwhile, the output is the next_owner of the coin and the amount of the coin they are given. In
Figure a discrete example is provided whereas Alice starts with 2 I3 and transfers 1.5 I3 to Bob
and 0.5 B to herself. Any number of inputs or outputs can be listed in the Bitcoin transaction so
long as they fit within the maximum block size of 4 MB.

(a) Most Simple TX (b) Typical Bitcoin TX
in ‘ out in out
coin_id next_owner 1.5 B
signature amount Bob
2B
Alice
058
Alice

Figure 1: A simplified version of a Bitcoin transaction.

In the UTXO model, the coin_id is represented in the form <hash>:<index>>, where hash is
the hash of the Bitcoin transaction and index is the index of the transaction. For example, in
Figure the index for Bob’s 1.5 Bis 0 and the index for Alice’s 0.5 Bis 1. An example using this
format for coin_id is shown in Table |3} Now that the UTXO model has been defined, let’s look at
a concrete example.

Example A Bitcoin Transaction using the UTXO Model.

Consider that Alice mines a block and receives 2 I3 as reward for mining the block. Then, Alice
transfers 1.5 I3 to Bob. Each of these events are represented as two separate transactions, TX; and
TXs. These transactions and the corresponding UTXO model are shown in Figure[2] TX; does not
have any input since Alice received the bitcoin as reward for mining the block. This transaction is



Coin ‘ Owner ‘ Amount

7f5d8---5a:1 | Alice 26 I3
4bc96 - --de : 0 Bob 34 B
89¢hd - --4a : 2 Carol 46 B
e6f5c---a3:1 | Alice 18 B

Table 3: The UTXO model using the proper identification for coins.

(a) TX, (b) TX, (¢) UTXO Model
in ‘ out in ‘ out ID ‘ Owner ‘ Amount
Alice 2 B Alice 2B | Bob 1.5 B TXID;:0 Alice 2B
Alice 0.5 B TXID5:0 Bob 1.5 B

TXIDs:1 | Alice 05B

Figure 2: An example of transactions and the corresponding UTXO model.

represented with TXID;:0 as shown in Figure The TX, transactions are represented with ID’s
TXID2:0 and TXID3:1.

2.3 Requirements of Transactions

Last, we note three requirements of a UTXO transaction:
1. The sum of all outputs must be less than or equal to the sum of all inputs.
2. The signature must be valid.

3. The input must be part of the UTXO set.

The first requirement ensures that Bitcoins are not created out of thin air. The outputs are allowed
to be less than the sum of inputs to provide a transaction fee to the miner. The fee incentivizes
a miner to include the transaction in their block. Typically, the miner will prioritize transactions
based on the bitcoin/byte of block space they receive as a fee. An example of a transaction providing
0.1 B to the miner is shown in Table

in out
158
Bob
213
Alice
04 B
Alice

Table 4: A transaction in which the Bitcoin miner receives a transaction fee of 0.1 B.

The only exception to these rules are coin-based transactions, which is when a coin is created as
reward for mining a block. In this case, the transaction has no input and the miner receives Bitcoin
according to a predetermined schedule.



3 Bitcoin Script

The Bitcoin script is a language to express contracts. The typical objectives of the Bitcoin script
are:

o self-custody
e scalability
e trading
A small list of examples of common script primitives include:
e signature verification
e multi-signature (¢-of-n) verification: need ¢ of n signatures to spend the coin
e time locks: coin is unspendable for a certain amount of time

e hash locks: coin is locked until a specific piece of data is revealed

3.1 Bitcoin Script Design

e The Bitcoin script is a stack-based language inspired by Forth
e There are no loops, which was done intentionally to ensure programs always terminate
e Bitcoin scripts are stateless

e Bitcoin scripts consist of a locking script (who a coin is sent to) and an unlocking script (to
authorize a TX)

e Bitcoin script consists of a simple set of Opcodes.

The Opcodes can be separated into the following categories:

constants flow control stack
splice bitwise logic arithmetic
crypto locktime

A full list of the Opcodes can be found at https://en.bitcoin.it /wiki/Script#Opcodes. Notice, some
of the Opcodes are disabled which reduces the power of Bitcoin scripting. The disabling of these
Opcodes were done by Nakamoto, who disabled them for security related reasons.

3.2 Time Locks

A time lock can be added to restrict spending on a coin. Time locks can be done based on time
stamps or block height. Additionally, time locks can be specified on absolute terms or relative
terms (i.e., 10 minutes after TX). Last, time locks may be a transaction time lock or a script time
lock.


https://en.bitcoin.it/wiki/Script#Opcodes

3.3 Bitcoin Script Examples

Example An unlocking and locking script with a single signature.
An example of a Bitcoin program is shown in Figure [3] In this script, a signature is first pushed

onto the stack followed by a public key. Last, an operation is performed to check if the signature
is valid, returning a 0 or a 1.

Stack

Unlocking script: <signature>
pubkey

. — <0 or 1 if valid>
signature

Locking script: <pubkey> signature

op_checksig

Figure 3: An example of an unlocking and locking script.

Example An unlocking and locking script with a multi signature.

The example in Figure |4 shows a script for verifying a multi signature. This script uses a t-of-n
clause, where 2-of-3 signatures must be valid for the transaction. In this script, two signatures are
first pushed onto the stack followed by three public keys. Last, an operation is performed to check
if the signatures meet the 2-of-3 standard.

i ; Stack
Unlocking script: <signature 2>
<signature 3> pubkey 3
. pubkey 2
. . signature 3 . .
Locking script: <pubkey 1> signature 2 — pubkey 1 — <0 or 1 if valid>

<pubkey 2> signature 3
<pubkey 3> signature 2
op_checkmultisig

Figure 4: An example of an unlocking and locking script.
To experiment with your own Bitcoin scripts, visit https://ide.scriptwiz.app/.

3.4 A Raw Transaction

Last, we examine what a parsed raw Bitcon transaction looks like. The raw Bitcoin transaction is
of the form:

0100000001c997a5e56€104102fa209c6a852dd90660a20b2d9¢c352423edce25857£cd37040- - -
Parsing this raw transaction shows that there is a single input and two outputs:

version: 01000000
inputsCount: 01
input #1:
txid: c997abeb6e104102...
vout: 00000000
scriptSigSize: 48
scriptSig:
OP_PUSHBYTES_71: 47
data: 304402204e45e16932b. ..
sequence: ffffffff


https://ide.scriptwiz.app/

outputsCount: 02
output #1:
value: 00ca9a3b00000000
scriptPubKeySize: 43
scriptPubKey:
OP_PUSHBYTES_65: 41
data: 04a2e1a62fe09c5f51b13905£f0. ..
OP_CHECKSIG: ac
output #2:
value: 00286bee00000000
scriptPubKeySize: 43
scriptPubKey:
OP_PUSHBYTES_65: 41
data: 0411db93e1dcdb8a016b49840f ...
OP_CHECKSIG: ac
locktime: 00000000

The example above is a Pay to Public Key (P2PK) transaction. There are many other types of
transactions, including:

e P2PKH: Pay to Public Key Hash

e P2SH: Pay to Script Hash

e P2WPKH: Pay to Witness Public Key Hash
e P2WSH: Pay to Witness Script Hash

e P2TR: Pay to Tap Root

For more examples, visit this gist by Robin Linus.


https://gist.github.com/RobinLinus/7971daeb88ecd939825bc456721d9378

	Introduction
	Bitcoin Transactions
	The Account Model
	The UTXO (Coin) Model
	Requirements of Transactions

	Bitcoin Script
	Bitcoin Script Design
	Time Locks
	Bitcoin Script Examples
	A Raw Transaction


