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1 Mining Pools

Bitcoin’s hash power is aggregated into large pools, e.g. FoundryUSA, AntPool and F2Pool, so that
individual miners can trade uncertain payouts for a steady share of rewards. Without pooling, a
miner with a low hash rate might wait years between blocks; in a pool it is paid in proportion to
contributed shares. Each mined block pays a fixed block reward of 3.125BTC, as well as the sum
of transaction fees.

Every four years the reward halves until the asymptotic cap of 21× 106 BTC is reached. Whether
fees alone can maintain enough hash power is an open question.

Even though aggregate hash power has grown, the protocol still produces one block every ≈ 10
minutes. Every 2016 blocks the target hash is recalculated by effectively adding or removing leading
zeros; so that the expected inter-block interval stays close to 600s.

2 Latency and Throughput

Let λ [blocks × s−1] be the raw mining rate and B [tx × block−1] the average block occupancy.

Throughput = Bλ, Latency(k) =
k

λ
,

with λ= 1
600 and k = 6 giving ≈ 60 minutes for finality. Empirically B ≈ 2000, so Bitcoin settles

only 3−4 tps versus Visa’s ∼ 30 000 tps.

Nakamoto chose a very low λ so that the worst-case network delay ∆ (seconds) is negligible in
comparison to λ−1.

3 Chain Quality and Fair Allocation

Chain Quality (CQ) is the long-run fraction of blocks in the main chain that are mined by honest
parties.

For adversarial power β

CQ ≥ 1− 2β

1− β
= 1− λA

λH
,
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producing the convex curve sketched in class that drops to 0 at β = 0.5. The straight line 1 − β
represents fair allocation where hash share = block share.
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4 Selfish Mining (Eyal & Sirer)

Under the selfish-mining/greedy witholding strategy the attacker maintains a private fork and pub-
lishes it opportunistically.

The attacker mines on its private tip, withholding newly-found blocks and increasing its lead.
The attacker publishes exactly one block when an honest block appears while the lead is positive,
creating a tie that honest miners resolve in the attacker’s favour.

When the honest chain catches up before the attacker can extend its fork, the attacker aban-
dons its private fork and immediately starts mining on top of the new honest block. This happens
occasionally and ensures the attacker never commits effort to a branch that will certainly be or-
phaned. Therefore, the attacker never wastes a block, because every block it eventually reveals
ends up on the main chain.

This strategy pushes CQ all the way down to the lower-bound curve, granting the attacker more
than its hash-power share of rewards and providing a powerful economic incentive for pools to
merge. At exactly β = 0.5 the attacker captures all rewards despite controlling only half the total
hash power.
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(a) Attacker withholds A1; when honest block H1 appears, it publishes A1 to win the tie.
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(b) If honest miners pull ahead, the attacker discards its fork and mines on the new public tip.

5 Latency and Throughput with Network Delay

Let ∆ be worst-case message delay. Only miners who have received the latest block can extend the
chain, so the effective growth rate is

λeff =
λ

1 + λ∆
.

As such,

Latency(k) = k
1 + λ∆

λ
, Throughput = B

λ

1 + λ∆
.

If λ∆ ≪ 1 (Bitcoin’s current regime) these collapse to the earlier formulas.

6 Summary

Bitcoin’s security model trades performance for robustness. Difficulty-adjusted PoW stabilises a
10-minute cadence, but leaves latency and throughput below modern expectations.
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